

Valuation of Energy Storage Co-located with Solar PV Generation

Andres Cortes Ph.D. (EPRI)

 in
 f

 www.epri.com
 © 2019 Electric Power Research Institute, Inc. All rights reserved.

Objectives and benefits

- Behind-the-meter storage co-located with PV for customer economic objectives
 - Overcome interconnection restrictions
- Distribution or transmission-connected storage
 - Increase capacity value of the system
- General benefits
 - Avoid curtailment
 - Access additional rebates and incentives (FITC)

Sinergy of using PV and storage together

Configurations

PV controllability:

- Curtailable
- Non-curtailable

Interconnection/inverter constraints:

- DC-coupled
- AC-coupled

Different configurations will imply different benefits, challenges, and limitations

Modeling Approach

www.epri.com

Grid Services Model

Two types of services:

Performance objective

- Impose constraints on the ESS operation
- Revenue associated to them:
 - Avoided costs
 - Capacity payments
 - Contractual payments

Economic objective

Driven by prices Modeled through dispatch /capacity optimization

- Resource adequacy
- Transmission upgrade deferral
- Distribution upgrade deferral
- Backup power

- Wholesale energy market participation
- Ancillary services
- Customer:
 - Energy charge
 - Demand charge

System Model

Other elements

Site load

- Customer load
- Feeder load

System load

• Load to determine capacity contribution

Interconnection

• Interconnection constraints

Other Aspects to Consider

Other value streams:

- Renewable smoothing
- Resilience (customer)
- Trade-offs:
 - Limit operation to obtain incentives vs forfeiting incentives to maximize operational benefits
 - Install larger (and more expensive) system now to attain incentives and manage degradation vs revamping in the future at lower cost

Example

PVPVESE Sorgegetenderen OIFCC

Each case has pros and cons. Economics are case-specific

www.epri.com

Conclusions

 As usual, value of storage co-located with PV depends on many variables

 Multiple conditions must be analyzed in order to find the most compelling business case

Together...Shaping the Future of Electricity

