

Grid Integration Track

Solar Energy Technologies Office

energy.gov/solar-office

Charlie Gay Director 23 May 2018

The U.S. DOE Solar Energy Technologies Office

- Annual U.S. PV installations grew 100x from 2006 to 2017, with over 50 GW-DC of cumulative installations
 - In 2017 PV represented 29 % of all new U.S. generating capacity
- The U.S. energy market consists of many different state, regional, and local markets
 - PV is much more competitive in certain areas and penetration levels vary dramatically California, which has represented approximately ½ of the U.S. market, received approximately 16% of its electric generation from solar in 2017.

US Solar PV Market Growth

Source: NREL/PR-6A20-68580

Modeled U.S. National Average System Costs by Market Segment, Q4 2017

A Pathway To 3 Cents per kWh for Utility PV

energy.gov/solar-off

Includes 5 Year MACRS. Horizontal Lines Indicate Low, Median, and High U.S. Solar Resources.

6

Levelized cost of energy at a couple of the preeminent utility-scale solar sites around the world is going below **3¢/kWh** the SunShot 2030 cost goal

- October 2017: Saudi Arabia's 300 MW PV plant was bid at 1.79¢/kWh
- September 2016: Abu Dhabi Electricity and Water Authority's 350 MW
 PV plant accepted a bid from JinkoSolar–Marubeni at 2.42¢/kWh

The **full cost of renewable energy** includes: Backup generation capacity Enhanced transmission and distribution systems Energy storage

U.S. Annual PV Installations, 2010-2017

energy.gov/solar-office

U.S. Department Of Energy

U.S. Market by Segment

Gigawatts (DC)

energy.gov/solar-office

Source: Bloomberg New Energy Finance (2H 2017 U.S. Renewable Energy Market Outlook)

J.S. Department Of Energy

PV Intermittency and the Power Grid

- PV solar intermittency raises grid stability and reliability concerns
- PV Variability increases operational complexity

Scheduling

Hours to Days

 Higher PV penetration requires increased grid flexibility

Years

Power Systems Planning & Design

Source: First Solar energy.gov/solar-office

Flexible & Dispatchable Solar ... Key to Market Expansion & Value Retention

Solar 1.0: Traditional

- Solar is part of mid-day load offsets peak or near-peak demand
- Energy-Only Value

Solar 2.0: Dispatchable

- Solar mitigates value erosion through plant controls
- Adds Grid Reliability Services
 & Flexibility Value

Solar 3.0: Fully Dispatchable

- Storage (hours, not days) timeshifts solar - dispatchable
- Adds Firm Generation Capacity Value

Installed generation capacity (all sources) = 1,177 GW Annual Energy = 4,077 TWh

Installed Wind capacity = 82 GW Installed Solar capacity = 35 GW (US 2017 estimate of 53GW) Installed Conventional Hydro = 79 GW

Installed Pumped Hydro = 21 GW Batteries = 1.5GW world-wide

Sources: EIA - <u>http://www.eia.gov/electricity/annual/html/epa_04_03.html</u> GTM Research / SEIA U.S. Solar Market Insight Report

Multi-scale Grid Optimization

"Solar Intermittency Raises Grid Stability & Reliability Concerns"

energy.gov/solar-office

NERC Task Force on Intermittent Resources Impact to the Grid

"Modern solar plants can now contribute to the **reliability and efficiency** of grid operation by offering the following capabilities:"

- ✓ Voltage, VAR control and/or power factor regulation
- ✓ Fault ride through
- Real power control, ramping, and curtailment
- Primary frequency regulation
- ✓ Frequency droop response
- Short circuit duty control

Utility-scale plants provide these feature ... but how about Distributed PV?

Source: NERC: 2012 Special Assessment Interconnection Requirements for Variable Generation

Source: First Solar energy.gov/solar-office

Tests Successfully Conducted on 300 MW Solar PV plant

Power Ramping

- Ramp its real-power output at a specified ramp-rate
- Provide regulation up/down service

Voltage Control

Control a specified voltage schedule
 Operate at a constant power factor
 Produce a constant level of MVAR
 Provide controllable reactive support (droop setting
 Provide reactive support at night

Frequency

- Provide frequency response for low frequency & high frequency events
- Control the speed of frequency response
- Provide fast frequency response to arrest frequency decline

Utility-Scale PV Plant Contributes to Grid Stability & Reliability Like Conventional Generation

USING RENEWABLES TO OPERATE A LOW-CARBON GRID:

Demonstration of Advanced Reliability Services from a Utility-Scale Solar PV Plant

16

300 MW PV Plant Stability

- 30MW headroom
- 4-sec AGC signal provided to Plant Controller
- Tests were conducted for
 - Sunrise
 - Middle of the day
 - Sunset

17

Properly Designed Utility-Scale Solar Can Support Grid Reliability & Stability

PV Plants Outperform Conventional Resources in Frequency Regulation

Source: First Solar energy.gov/solar-office

2.4

Utility-scale PV solar is a flexible resource that can enhance grid reliability

Dispatchable PV Plant

- CAISO, NREL and First Solar pioneering demonstration of advanced reliability services
- Solar can provide NERC-identified essential services to reliably integrate higher levels of renewable resources, including:
 - Frequency Control
 - Voltage Control
 - Ramping capability or flexible capacity
- Automated Generation Control (AGC) regulation accuracy of 24-30 %points better than fast gas turbines
- Reduces need for services from conventional generation
 - Goes beyond simple PV energy value
 - Enables additional solar
 - Reduces need for expensive storage

CAISO: "Grid Friendly Utility-Scale PV Plants are Essential for Large-Scale PV Integration"

"Increasing Solar Penetration Challenges Grid Flexibility"

energy.gov/solar-office

Inflexible Solar Saturation Already Evident on the CAISO Grid

- The "duck" chart elegantly captures oversupply misperception
- **Two Concerns:**
 - Low Net Load: flexibility to reduce must-run generation resources is limited
 - High Ramp Rates in • Evening: flexibility of other generation to ramp up is limited

21

Challenges : Curtailment

California Independent System Operator Data

Includes utility-scale solar only. Does not include behind-the-meter.

Measured against Day-Ahead, SP15 power prices.

energy.gov/solar-office

Realized price scalar (% of ATC)

Dispatchable Solar is on the Way

Solar PV energy may be self-consumed, delivered to the grid, or stored in a battery.

Smart AC

AC unit can be configured to pre-cool the home with solar output, then allow the home temperature to "drift" up to a set maximum temperature before drawing from the grid.

Smart domestic water heater

000

00

00

E

Water heater can be set to pre-heat water with solar output and store hot water for later use

Battery

Solar energy may be stored in an electrical battery for later use

Electric vehicle

Excess solar output can be delivered to an electric vehicle and used for transportation or stored for home use

Modern Electric Grid: Two Way Energy and Data Flow

Goal: Centralized and distributed generation optimized with finely tuned, 2-way load balancing

energy.gov/solar-office

What can Energy Storage do for the grid?

Maintaining Balance, D. Stenclick, P. Denholm, B. Chalamala, IEEE Power and Energy Magazine, November/December 2017

energy.gov/solar-office

25

Mapping the Value of Storage

SOLAR ENERGY TECHNOLOGIES OFFICE U.S. Department of Energy

energy.gov/solar-office

Source: Lazard's Levelized Cost of Storage Analysis (LCOS 3.0) - https://www.lazard.com/perspective/levelized-cost-of-storage-2017

Global combined behind-the-meter and utility-scale storage deployments

27

Technology mix of globally commissioned utility-scale energy storage

% by MW

Hybrid Enhanced Gas Turbines (EGT)

- Built in partnership with GE and Wellhead Energy Solutions
- Combines a Gas Turbine (GT) and Battery Energy Storage System (BESS)
- BESS online end of 2016
- GT and BESS integrated Q1 2017

Hybrid EGT Market Results – Value

Compared with SCE's non-hybrid peakers over the same period:

- Higher capacity utilization
- Lower fuel gas usage
- Lower emissions
- Higher market revenues

energy.gov/solar-office

30

MW-Scale Project Examples

The Zhangbei Project - State Grid / Sparton Resources

2MW Vanadium Redox Flow Battery

Renewables Energy Time Shift

http://www.energystorageexchange.org/projects/2026

SDG&E El Cajon Substation

- 37.5MW Li-ion Battery
- Electric Energy Time Shift
- Electric Supply Capacity
- Renewables Capacity Firming
- Renewables Energy Time Shift
 http://www.energystorageexchange.org/projects/2218

Hornsdale Power Reserve (\$323.5/kWh)

100MW Li-ion Battery

- Frequency Regulation
- Renewables Capacity Firming
- Renewables Energy Time Shift

http://www.energystorageexchange.org/projects/2271

Stacking Up the Benefits

Stacked Benefits: Comprehensively Valuing Battery Storage in California, R. Hledik, R. Lueken, C. McIntyre, and H. Bishop, Sept. 2017. energy.gov/solar-office <u>http://files.brattle.com/system/publications/pdfs/000/005/494/original/stacked_benefits_final_report.pdf</u>?

Projected Battery Storage vs Combustion Turbine Peaking Plants

energy.gov/solar-office

Department Of Energy

NREL/First Solar R&D Program on PV & Storage

energy.gov/solar-office

EIA's Preliminary 2018 Annual Energy Outlook

Global energy storage will increasingly be behind-the-meter

Role of Artificial Intelligence

Ke Jie "AlphaGo sees the whole universe of Go, while I could only see a small area around me... it's like I play Go in my backyard, while AlphaGo explores the universe. Machine Learning can be used to automatically manage electricity distribution and learn to forecast energy use.

Autonomous Energy Grids (AEGs)

Optimized for secure, resilient and economic operations

Key Features of AEGs

- Autonomous Makes decisions without operators
- **Resilient** Self-reconfiguring, cellular building blocks, able to operate with and without communications
- **Secure** Incorporates cyber and physical security against threats
- **Reliable and Affordable Self** optimizes for both economics and reliability
- Flexible Able to accommodate energy in all forms including variable renewables

https://www.nrel.gov/docs/fv18osti/68712.pdf

Connections : We Need Collaborators

- Electricity is not easily stored in native form
- Need to convert to some other form (chemical, mechanical, thermal) to store energy

- There are alternatives to energy storage
 - Generator ramping (constrained by min/max operational levels and ramp speed)
 - Load ramping (constrained by customer needs)
 - Geographic electricity moving/shifting (transmission)

