Exceptional service in the national interest

The 2013 PV Performance Modeling Workshop: Welcome and Purpose

Joshua S. Stein, Ph.D.

Sandia National Laboratories, Albuquerque, NM

May 1-2, 2013 Santa Clara, CA

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

SunShot Goals and PV Performance

- DOE SunShot Goal: Cost-competitive solar energy by 2020 (\$0.06 per kW-hr LCOE)
 - Solar Energy 14% by 2030; 27% by 2050 (Source: SunShot Vision Study
- LCOE depends on cost, performance, reliability, and O&M
- Solar fuel is "free" most of the cost is up front financing is very important!
- Accurate PV Performance Modeling is critical for SunShot goals to be achieved.
 - Reduce uncertainty to reduce cost of capital
 - Standard methods for characterizing technology and simulating performance
- Collaborative and inclusive approach

Agenda Topics

- Welcome and Background
- Wed 1-5 PM: Module Models: Generating performance coefficients
- Wed 7-9PM PV System Performance Models (What's new?)
- Thurs 8-10AM Solar Resource Data
- Thurs 10AM-2:30 PM System Losses and Derates
- Thurs 3-4:30PM Modeling in the Real World
- Thurs 4:30-5 PM Summary and Next Steps....

What is PVPMC? – A little history...

- In September 2010, Sandia National Laboratories held a PV Performance Modeling Workshop
 - Invite only (50 participants)
 - Model developers, Independent engineers, integrators, PV manufacturers, financiers, researchers.
 - Pre-workshop "homework" modeling assignment
 - Blind modeling exercise (predict PV system production)
 - Workshop report available at <u>http://pv.sandia.gov</u> (PV Publications)
- Workshop results:
 - Models do not agree (lots of inputs) (uncertainty ignored)
 - Models are quite different (PVWATTS to PVsyst)
 - Few standards or best practices are available
 - Non-standard data sources (module and inverter databases)
 - These factors contribute to significant perceived risk and high cost of capital.

Blind Modeling Study Example

Blind Study Facts

- ~20 participants
- Each given measured weather and irradiance
- Each given 3 PV system designs
- Asked to predict annual energy from systems
- Results compared with measured annual energy
- Most results overpredicted annual energy
- Differences were significant even when same model was used.

2300000 Total Energy vs. Model Type by Model Type Legend 5-Par 2200000- Internal Other 2100000- PVForm 2000000- PVSyst PVWatts Fotal Energy 1900000- SAPM 1800000-Measured energy 1700000-15% difference 1600000-1500000-1400000 5-Par Other PVForm PVSyst PVWatts SAPM Internal Model Type

Lesson Learned: Greater consistency and transparency in modeling is needed.

PV Performance Modeling Collaborative

- PV modelers working together to increase confidence in the predictability of PV system performance.
- Transparent science, algorithms, validation, process
- Collect and organize accurate information
- Provide access to advanced algorithms and submodels
- Organize periodic meetings, webinars, conference sessions, workshops.
- Start industry working groups to create standards and best practices for PV performance modeling.
 - Model results generated with validated models, presented in a consistent format, uncertainty is quantified.
 - Increased confidence in model predictions = more money for investment in PV.

Our Approach: Open the Hood and Work Together

Sandia National Laboratories

Model Users Don't Know What is Under the Hood and Model Developers Don't Know How the Model Will Be Operated

Website: http://pvpmc.org

Initial login = sandia

When you join you will set up a username and password

- Irradiance and Weather Available sunlight, temperature, and wind speed all affect PV performance. Data sources include typical years (TMY), satellite and ground measurements.
- **2. Incidence Irradiance** Translation of irradiance to the plane of array. Includes effects of orientation and tracking, beam and diffuse irradiance, and ground surface reflections.
- 3. Shading and Soiling – Accounts for reductions in the light reaching the PV cell material.

- Cell Temperature Cell temperature is influenced by module materials, array mounting, incident irradiance, ambient air temperature, and wind speed and direction.
- 5. Module Output Module output is described by the IV curve, which varies as a function of irradiance, temperature, and cell material.

- 10. System
 - Performance Over Time Monitoring of plant output can help to identify system problems (e.g., failures, degradation).
- **9.** AC Losses For large plants, there may be significant losses between the AC side of the inverter and the point of interconnection (e.g., transformer).
- Eff
- 8. DC to AC Conversion The conversion efficiency of the inverter can vary with power level and environmental conditions.
- 7. DC to DC Max Power Point Tracking A portion of the available DC power from the array is lost due to inexact tracking of the maximum power point.
- 6. DC and Mismatch Losses DC string and array IV curves are affected by wiring losses and mismatch between series connected modules and parallel strings.

11

Modeling Steps

 Detailed outline covering the 10 Steps to Modeling a PV System.

This section will eventually become an online, multimedia textbook on PV performance modeling theory and practice.

Contributors will be acknowledged at base of page.

Join for More Access

- Some features and resources are only available if you Join.
 - Documents
 - PV_LIB Toolbox
 - List of members?
- Need to provide name, email, affiliation, etc.
- Receive periodic email announcements

Documents, Nomenclature, Blog

- Document library
 - Documents, reports, and papers (no copyright violations)
 - Presentations
 - Datasets (databases, performance, testing, etc)
- Nomenclature
 - A to Z Listing of technical terms
- PVPMC Blog and Events (in development)
 - PV Modeling News and Events (reviews, conferences, etc)
 - Send announcements for me to post
 - Significant contributors can request posting privileges

PV_LIB Toolbox for Matlab

Over 30 functions

- Example scripts
- Time and Location Utilities
- Irradiance and atmospheric functions
- Irradiance translation functions
- Photovoltaic system functions
- Education, model validation, transparency
- License agreement

Summary

- Performance modeling is a key component of PV project bankability.
- Currently models are opaque. Uncertainty is significant.
- Solution: "Open the Hood", develop and promote best practices, work across the PV field
- PV Performance Modeling Collaborative provides a venue to
 - "Write the book" on PV performance modeling methods and practice.
 - Communicate to a wide PV performance modeling community
 - Share methods and tools needed for model validation
 - Establish PV performance modeling as a "discipline"
- Join, Contribute, and Help Increase Confidence in PV System Performance!

Thank You!

jsstein@sandia.gov

http://solar.sandia.gov http://PV.sandia.gov http://pvpmc.org