

Worldwide benchmark of modeled solar surface irradiance

Adam R. Jensen, Anne Forstinger, Stefan Wilbert, Birk Kraas, Yves-Marie Saint-Drenan, Carlos F. Peruchena, Elena Collino, Dario Ronzio, Jesus Polo Martinez, Jose A Ruiz-Arias, Chris A. Gueymard, Dazhi Yang, Natalie Hanrieder

PVPMC, 23 August 2022

Technology Collaboration Programme

Motivation for benchmarking

"SolarAnywhere is the **most trusted, accurate & validated** solar resource dataset available"

"Multiple independent studies have found Solargis to be the **most reliable solar database**"

"Produce highly accurate historical irradiance estimates with the **lowest uncertainty** available on the market."

Reference radiation data

Comparison to ground measured irradiance data

- Includes Tier 1 & 2 stations
- 1 min data resolution (GHI, DNI, DIF)
- Years: 2015 -2020

Tier 2 station examples

Ground stations

PVPS

161 stations

SolarStations.org

Catalog of metadata

- Latitude / longitude
- Operating period
- Webpage
- Etc.

PVPS

Open source!

https://github.com/AssessingSolar/solarstations

Need for quality control

- Soiling
- Local obstructions (trees, buildings, etc.)
- Snow/dew on instrument
- Tracker misalignment
- Instrument malfunction
- Incorrect calibration
- Sensor tilt

Quality control

- Remove questionable / erroneous data
- Reduce uncertainty of dataset

Step 1: automatic checks

- Extremely rare limits^a
- Three component testa
- Normalized K-tests^b

References

[a] Long and Dutton (2002)

[c] Peruchena (2020)

Tracker misalignment test^c

[b] Geuder et al. (2015), Gueymard (2017)

15 automatic - flags for each → timestamp

test passed
test failed
nan: test incomplete

7

Easy to implement

Well documented

Insufficient for some errors

PVPS

Step 2: visual inspection

- Visual check by an expert
- Three versions
 - Original data
 - With automatic flags
 - Final data

PVPS

• Python code available

github.com/AssessingSolar/solar_multiplot

Multiplot: heat maps (elevation vs. azimuth)

Modeled data

• Benchmarking: 60 min

Provider	Dataset / model	Main data source	Spatial coverage								
DWD	SARAH-2.1	MSG satellites	Full disk, Meteosat								
CAMS	CAMS v3.2	MSG satellites	Europe / Africa / Middle East / Atlantic Ocean (Meteosat 2nd Gen, field of view, -66°N to 66°N)								
	CAMS pre-v4		Clear sky data available globally.								
Meteotest	Meteotest, various sat.	GOES-16, MSG-4, IODC, HIMAWARI-8, Meteotest MOS	Global (-66°N to 66°N)								
CSIRO	CSIRO	Himawari-8	Australian continent								
NREL (NSRDB)	Physical Solar Model Version 3	GOES	Contiguous United States, part of Alaska, southern Canada, Central America, and part of South America. Longitudes: 25°W - 175°W Latitudes: 21°S - 60°N to the north								
Solargis	Solargis v2.x, various sat.	various satellites	Global (60°N to 45/55°S), land area and adjacent sea and oceans. Region between 60-65°N on request.								
ВоМ	BoM APS3 ACCESS-G3	NWP	Global								
NASA	CERES	various satellites	Global (60°N to 55°S), land area								
KNMI	MSG-CPP algorithm v1	MSG satellites	Full disk, Meteosat								

Metrics

Abbr.	Meaning
MBD, rMBD	Mean bias deviation, relative mean bias deviation
RMSD, rRMSD	Root mean square deviation, relative root mean square deviation
MAD, rMAD	Mean absolute deviation, relative mean absolute deviation
KSI	Kolmogoroff-Smirnoff Index
CPI	Combined Performance Index
OVER	Relative frequency of exceedance situations

PVPS

Regional site adaptation (by data providers)

GHI – North America

GHI rMBD (%)

site ALB ARI BAR BIS BON BOU DES FOP GOO HAF HER* LAN LAS MAD OAK* PAN ROS SAL SEA SIL* SIO SOL SRR STR BUR* GOL SET* Mean Std Abs_Mean model **SOLARGIS** -0.0 -1.3 -0.5 -3.5 -3.0 -1.0 -1.9 -0.7 0.1 0.0 -0.5 -0.4 **14.5 1.9** -2.5 -0.4 **0.7** -2.5 -2.6 -3.1 -0.6 -2.5 -1.7 -1.1 0.9 -0.4 3.4 1.9 0.9 **16.5 8.0** -1.1 -0.5 **1.5** -1.7 -0.6 -1.4 -0.5 **0.4** -2.0 -1.2 **1.4** 0.6 1.9 -1.6 1.0 NSRDBGOES 0.6 -1.1 1.6 -0.6 -4.9 -2.2 -2.4 0.5 1.6 0.0 4.0 2.2 -6.4 -12.9 -3.6 -7.6 -1.2 -5.5 0.0 -1.3 -3.4 -7.3 -13.2 -3.2 -2.2 -3.5 -8.8 -9.6 -4.4 **METEOTEST** -1.9 -4.3 -3.7 -9.3 -9.4 17.0 3.9 -6.3 6.1 6.0 -9.4 -21.0 11.3 -18.0 -2.2 35.0 23.6 -3.3 -6.1 -3.1 -18.4 -20.6 -10.2 1.4 7.7 -22.5 0.7 CERES -11.7 -2.3 -78.6 -11.0 -8.3 -14.1 -18.6 -27.3 2.4 -8.8 -6.2 ACCESSG3 2.5 5.7 4.8 3.4 -0.5 5.4 5.6 1.2 9.2 26.7 3.8

DNI – North America

DNI rMBD (%)

site ALB ARI BAR BIS BON BOU DES FOP GOO HAF HER* LAN LAS MAD OAK* PAN ROS SAL SEA SIL* SIO SOL SRR STR BUR* GOL SET* Mean Std Abs_Mean model 0.2 -4.8 -5.3 -0.3 -5.3 -3.5 -1.8 -4.0 -2.6 1.7 -2.5 15.9 2.0 -4.2 -1.2 -5.2 -2.3 -3.8 -1.2 -2.8 -5.1 -4.0 -4.2 -6.4 -1.8 4.4 3.5 SOLARGIS 2.5 -0.1 **24.9** 7.9 5.4 11.4 4.7 6.3 5.2 3.0 10.9 0.8 0.8 8.2 6.9
 14.0
 6.0
 -5.3
 -2.5
 2.0
 5.4
 5.5
 2.7
 10.3
 0.1
 10.7
 26.7
 NSRDBGOES 6.2 1.8 7.2 7.5 -20.5 -4.7 -18.7 -3.8 -6.6 -0.3 18.3 1.8 -6.3 6.9 -9.4 -8.2 -25.9 2.5 -1.8 -5.4 -16.3 -30.8 -8.2 11.8 10.6 METEOTEST 0.9 -4.8 -3.5 -20.0 -14.5 -7.0 -25.7 -17.1 39.9 11.5 -7.4 -11.6 -17.6 -40.1 -43.9 -24.7 -12.7 6.1 -46.8 -14.4 -31.4 -21.7 21.7 -28.1 -54.7 -15.1 -29.8 -43.9 7.8 -41.6 CERES -30.0 -19.8 -82.6 -17.9 -29.4 -44.5 26.9

Results are preliminary!

GHI – Europe

site CAB CAS CEN DAO DAV KIR LOC LYN MIL NOR ODE PAL PAY TAB TOR VIS CAR JAE* KAZ NYA Mean Std Abs_Mean model

																					\frown
SOLARGIS	-2.5	0.3	-0.1	-2.1	-1.0	0.5	0.9	1.9	-1.6	1.7	-1.8	-1.7	0.2	-2.3	-2.6	0.6	1.0	2.6	-0.2	1.6	1.3
METEOTEST	-3.6	-0.7	0.9	3.2	5.1	0.5	1.7	0.0	-0.7	8.8	-0.2	-2.2	3.4	-4.9	-7.1	0.1	2.7	2.1	0.9	3.2	2.4
CAMS_v3.2	2.1	-0.0	-2.5	-8.1	-6.7	-2.2	0.5	-1.8	-1.0	7.3	2.5	-2.7	-4.2	-3.2		-1.1	-1.3	4.8	-1.0	3.8	3.1
CAMS_pre-v4	-4.1	-0.8	-2.6	-10.2	-9.0	0.3	-4.5	-1.4	-4.4	-0.2	-3.3	-3.2	-1.8	-8.0	-4.4	-0.9	-2.0	0.8	-3.3	3.2	3.4
KNMISEVIRI	0.7	0.2	-0.2	-17.7	-17.3 -19.1	-3.0	1.9	2.7	0.3	-7.7	0.4	-1.3	-2.7	0.2	-0.8	-0.9	-1.4	-2.3	-2.8	6.0	3.6
DWDSARAH	-1.2	1.7	-1.0	-21.5	-20.4	-1.4	0.2	3.5	-1.6	-5.4	1.7	-3.7	1.7	-2.7		0.9	-1.5	-0.7	-3.0	7.1	4.2
CERES	-3.2	-3.8	-3.5	-8.0	-5.9 4.3	-7.7	3.2	-1.2	-0.1	-7.0	-0.7	-10.0	-6.2	-8.3	-2.4	-8.4	-5.1	-4.1	-38.8 -4.7	3.5	5.1
ACCESSG3		2.0		3.2	4.1	0.2	6.4		4.7	6.0	0.2		2.3		-0.9						$\mathbf{\nabla}$

Results are preliminary!

www.iea-pvps.org

Thank you!

Adam R. Jensen, IEA PVPS Task 16 arajen@dtu.dk

Technology Collaboration Programme

What actionable data do you need?

- How to group results? E.g., Climate, continents, etc.
- What metrics are of interest? Bias, RMSE, etc.
- Raw values (tables) or maps?
- Anonymized results to get commercial providers involved?

Additional criteria

- Each hour is split into 5-minute bins. The hour is considered valid if it contains a minimum of ten 5-min periods which each have at least three valid measurements.
- Measurements below horizon line are discarded
- Assess annual percentage of missing and flagged data

