

A comparison of bifacial PV system energy yield modeling tools applied to 1P single-axis tracker system

Yuanjie.Yu, Jn.Jaubert, Baohua.He System technology center Canadian Solar Inc.

Dec 4th , 2018

CSIQ NASDAQ Listed

03

Bifacial system simulation analysis

Conclusion

Bifacial module with leading half-cut cell technology

Canadian Solar's BiKu : Based on Eight years' track record

Canadian Solar Poly PERC technology introduction

Main Characteristics

- State of the art MCCE (Metal Catalyzed Chemical Etching)
- PERC structure using ALD Al2 O3 passivation
- 5 busbar design / MBB multi-busbar (9)
- Controlled LID/LeTiD
- Excellent low light response
- Lower temperature coefficient
- Enables Bifacial cells

Changshu bifacial field trial overview

Changshu project located in Suzhou, Jiangsu Province, East China, total system size is 28 kWdc. Climate type is typical Humid with hot summer.

Changshu bifacial field trial basic information

ltem	Mounting type	Module type	Module quantity	DC capacity (Kw)	Inverter			
					Product type	Nominal power	MPPT number	Max input current
FT1		3U-MS-FG	10	3.71		10k\//	2	120
FT2	Single axis	(single facial)	10	3.70	GROWATT	IOKVV	2	13A
FT3	tracker(1*10)	3U-MB-FG	10	3.67	1000TL3-S	106/0/	2	120
FT4		(bifacial)	10	3.69		IUKVV	2	13A

Albedo meters

Field trial data cleaning methodology

Data processing item	Description
Data source	DC related parameters and climate data with 1min interval
Basic outlier filter	 ✓ PArray-DC< 5W; ✓ POA < 20W/m²; ✓ Events and missing data ✓ Box plot extreme and mild outliers for Power/irradiance
Comparison criterion	Specific energy yield calculation (kWh/kW) with front side power
Bifacial gain definition	$100\% \times \left(\frac{\frac{E_{bifacial} / Pmp_{bifacial}}{E_{monofacial} / Pmp_{monofacial}} - 1\right)$

Bifacial field trial testing results- Energy yield

During normal operation 231 days, accumulated bifacial gain for the tracker system is 9.5% under average albedo 26%.

Monthly Bifacial Gain

Data source: DC side on field trial platform in Changshu, China. Testing period : Feb-Oct, 2018

Bifacial system simulation analysis

Conclusion

Energy modeling methodology -software introduction

- ✓ NREL's Python code named **BifacialVF**. (Only used for irradiance simulation)
- ✓ Freeware and open-source: https://github.com/NREL/bifacialvf

- ✓ One of the most popular commercial simulation software tools, **PVsyst**.
- ✓ Canadian Solar's own simulation tool, CASSYS

CanadianSolar Freeware and open-source: http://canadiansolar.github.io/CASSYS/

- ✓ Inputs and underlying model are very similar to PVsyst
 - Some alternate models are available like spectral correction.
 - \clubsuit Can be run with any time step and in batch mode

Simulation VS measurement - Energy yield

Bifacial energy yield difference between simulation and measurement can match well within reasonable uncertainty range .

Different simulation approach on backside irradiance and energy yield

Simulation A (DNI+GHI) comparison

200

400

600

Suzhou POA irradiance (pyranometer) (W/m2)

800

1000

13

Canadian Solar Inc

The irradiance data in two neighboring places were adopted.

Remark:

Filter the measured POA irradiance difference more than 50W/m²

Simulation A (DNI+GHI) VS measurement- Front POA irradiance

Three approaches showed reasonable uncertainty expectation on front irradiance simulation.

Canadian Solar Inc

Note: Model transposition uncertainty(2-3%) and measured difference between sensor difference between the pyranometer and Si sensor(1-3%) should be considered,

Simulation A (DNI+GHI) VS measurement-Rear POA irradiance

Three approaches showed

aggressive results on rear irradiance simulation

?

MBE: Sim. -Meas.

Additional factors that influence

the results need to be studied.

Simulation limitation – Backside irradiance sensor height

Sensor height difference is one of simulation deviation sources.

16

Canadian Solar Inc.

Simulation A (DNI+GHI) VS measurement- Corrected Rear POA irradiance

After correction, the simulation results become conservative. It is not very easy to match very well.

Simulation A (DNI+GHI) VS measurement

-Rear POA irradiance

Simulation B (POA) approach comparison

Simulation B (POA) approach VS measurement - Rear POA irradiance

For rear side irradiance: CASSYS and PVsyst are still

aggressive ?

Remark : Average of three sensor irradiance is about 35.6% higher than middle irradiance sensor. Height brings additional uncertainty.

Simulation B (POA) VS measurement - Energy yield

Different simulation time intervals comparison

CASSYS can provide alternative time step from 1min to hourly for key parameter input.

Different time intervals - Rear POA

Minutely simulation results is a little better than hourly and monthly on back irradiance level.

		(SimMeas.)/Meas.(%)	
Time step	Minutely albedo	Hourly albedo	Monthly albedo
MBE/AV	22.1%	22.7%	23.6%

Different time intervals – Energy yield

Simulation results with different time steps show the same level in energy yield side. Current monthly albedo should be enough for bifacial energy yield simulation.

		(SimMeas.)/Meas.(%)	
Time step	Minutely albedo	Hourly albedo	Monthly albedo
MBE/AV	-1.5 %	-0.8%	-1.1%
			Canadian Solar

Bifacial system simulation analysis

Conclusion

- Three simulation approaches (NREL, PVsyst, CASSYS)seem relatively conservative considering the limitation of sensor type, height, position, etc.
- Energy yield simulation and measurement in Changshu field match well within reasonable uncertainty range. Rear side simulation under low albedo is not sensitive to energy yield impact.

Different time intervals for albedo input are not sensitive under low albedo for bifacial energy yield simulation.

Next step

In order to simulate more accurately next step, we will

- \checkmark Set up more accurate irradiance sensor testing system with more reasonable position
- ✓ Simulate through stronger irradiance simulation software(like Rhinoceros +DIVA)
- \checkmark Albedo testing method and calculation needs to align the same.
- ✓ Special modules can be made to monitor and verify irradiance non-uniformity on back side.
 ✓
- Thanks for continuous contribution to bifacial energy modeling from PVsyst, NREL, SANDIA, CASSYS,...
- Canadian Solar will share learnings about simulation
- experience based on more field test data!

New Field trial testing in Wuhai

Total 24 strings

Location	Mounting type	Module type	Module Qty	String Qty	Invert	Remark	
1-17	Landscape	CS3U-355PB-FG	J-355PB-FG 216		Sungrow	The same BOM for bifacial and monofacial module	
Red zone 3*6		CS3U-355P-FG	216	12	SG80KTL-M		
					Key parameter	Value	
Single facial module				Tilt	35°		
			Height above the ground		$0.5 \mathrm{m}(\mathrm{fixed})$		
			双面实验组件	pitch	8m (fixed)		
				Ground albedo	0.3		
					Mounting structure	Triangle steel structure	
				Foundation	Screw steel tube		
Back side irradiance monitoringGround Albedo monitoring				rin g	Cable connection	Up and down string connection	

Thank you for your attention

2018/12