A General Bifacial Photovoltaic Device Method to Predict System Performance with Albedo

Erin M. Tonita¹, Christopher E. Valdivia¹, Annie C. J. Russell¹, Michael Martinez-Szewczyk², Mariana I. Bertoni², and Karin Hinzer¹ ¹SUNLAB, University of Ottawa, Ottawa, Ontario, Canada ²DE*f*ECT Lab, Arizona State University, Tempe, Arizona, USA

• Calib Ex	oration works we ()	II for c Ottav	other loo va, 4%	cations lower ir	around N Phoenix	North Am «	nerica		$AM1.5(\lambda) +$		
Scaled	rear irradiance m	nethod	param	eters					$(AM1.5(\lambda) \times \lambda)$	$R_x \times \varphi$)	
Spectral	albedos, <i>x</i>	Snow	White sand	Dry grass	Concrete	e Roof shingle	Green grass	Red brick			xtan
HSAT	R_x $N_{x,sys}$	0.248 0.263	0.219 0.292	0.139 0.304	0.092 0.318	0.089 0.322	0.089 0.320	0.070 0.341	$AM1.5(\lambda)$	AA®	Scaled method reduces re
Latitude Fixed-	Rear irrad. (suns) R _x N _{x,sys}	0.224 0.218 0.231	0.195 0.319 0.425	0.133 0.206 0.451	0.091 0.140 0.485	0.083 0.135 0.489	0.077 0.135 0.485	0.080 0.106 0.516		Contact: etoniur	CONCLUSION
ENI	Rear irrad. (suns)	0.197	0.285	0.197	0.138	0.126	0.117	0.121	$AM1.5(\lambda) \times A_x(\lambda) \times N_{x,sys}$	• S • I • I	caled rear irradiance method bes with a simple calculation to within EC bifacial measurement standar
• Meth estim perfo	nods evaluated via nations of outdoo ormance	a r	300	M DUE Boulder	Ionofacial ET ZZ Fr r, Colorac	ont-Only		T IE	Bifacial Max Fixed Scaled *** ***	Max RMSE 39%	Internous for albedo of ifacial module power ratings Monofacial efficiency ~20.2%

acial		100	bifacial module power ratings
Max Fixed +54% +54% +54% +54% +21% +21% +21% +21% +21% +21% +21% +21	Scaled	Image: Constraint of the second state of the second sta	Monofacial efficiency ~20.2% Bifacial efficiency Soil ~21.4% Grass ~22.0% Sand ~24.6% Snow ~25.2% $\eta = \frac{P_{mp,bi.}}{P_{inc,mono.}}$ REFERENCES
Grass White Sand	Snow Hours	0.2 0.4 0.6 0.8 1.0 a _{EQE}	 International Technology Roadmap for Photovoltaic (ITRPV), 2021 A. Onno, N. Rodkey, A. Asgharzadeh, S. Manzoor, Z. J. Yu, F. Toor, a based bifacial tandem photovoltaic systems," <i>Joule</i>, 4, 580-596 (20) T. C. R. Russell, R. Saive, A. Augusto, S. G. Bowden, and H. A. Atwa cells: a theoretical and experimental study," <i>IEEE J. of Photovolt.</i>, 7
Boulder	Uttawa	Edmonton Cambridge Bay	4. IEC 60904-1-2: Photovoltaic devices – Part 1-2: Measurement of c

ear incident irradiance to levels typical during field operation

400

800

★ Concrete

+ Red Brick

Roof Shingle

t represents outdoor operation and predicts **bifacial gain** 2% of outdoor systems across North America

400

Rear Irradiance (W/m²)

800

800

rds can be adapted to include broadband or spectral albedo

•	Adapted IEC methods	for	albedo	could	inform	future
1	bifacial module power	r rat	ings			

Performance of Spectral Albedo Adaptec IEC Bifacial Method						
Albedo	$P_{\rm mp}$ (W/m ²)					
	Scaled	IEC	Adapted IE			
Snow	251.9		251.5			
White sand	245.7		245.8			
Dry grass	230.0		230.0			
Concrete	220.5	242.1	220.7			
Roof shingle	219.8		220.2			
Green grass	220.3		220.2			
Red brick	216.2		216.4			
Average difference	-	20 W/m ²	0.2 W/m ²			

- TRPV), 2021 Results, Ed. 13, Frankfurt, Germany (2022).
- Yu, F. Toor, and Z. C. Holman, "Predicted power output of silicon-580-596 (2020).
- nd H. A. Atwater, "The influence of spectral albedo on bifacial solar f Photovolt., 7(6), 1611-1618 (2017).
- IEC 60904-1-2: Photovoltaic devices Part 1-2: Measurement of current-voltage characteristics of bifacial PV devices, Ed.1.0 2019-01 (2019).
- 5. A. C. J. Russell, C. E. Valdivia, C. Bohémier, J. E. Haysom, and K. Hinzer, "DUET: A novel energy yield model with 3D shading for bifacial photovoltaic systems," IEEE J. of Photovolt. (2022).

Concrete

Phoenix

Non-Snow Hours

Dry C

6. M. Sengupta, Y. Xie, A. Lopez, a. Habte, G. Maclaurin, and J. Shelby, "The National Solar Radiation Data Base (NSRDB)," Renew. and Sustain. En. Rev., 89, 51-60 (2018).

7. E. M. Tonita, C. E. Valdivia, M. Martinez-Szewczyk, M. R. Lewis, M. I. Bertoni, and K. Hinzer, "Effect of air mass on carrier losses in bifacial silicon heterojunction solar cells," Solar Energy Materials & Solar Cells, 230, 111293(2021).

FIND OUT MORE: E. M. Tonita, C. E. Valdivia, A. C. J. Russell, M. Martinez-Szewczyk, M. I. Bertoni, and K. Hinzer, "A general bifacial photovoltaic device method to predict system performance," Submission Under Revision (2022).

Edmonton

calculated with **DUET**^[5]

 $E_{\chi} = PoA_{\rm f,tot} \times \frac{P_{\rm mp,\chi}}{1000 \,{\rm W/m^2}} \times$

Area

• Overestimation expected

ACROSS NORTH AMERICA

Cambridge Bay

69.1°N, 105.1°W

ergy 100

Red Brick

• Estimations calculated

with:

Green Grass Roof Shingle

Mexico City

