

Advanced failure diagnostic approach for grid-connected photovoltaic systems

Andreas Livera, Marios Theristis, George Makrides and George E. Georghiou PV Technology Laboratory, University of Cyprus (UCY)

Outline

- Cyprus and the PV Technology Laboratory of the UCY
- Introduction to FDR
- State-of-the-art
- Approach
- Results
- Conclusions

Cyprus

Highlights of the PV Technology Laboratory

PV Technology Laboratory

Indoor/outdoor testing

Introduction

- A major requirement for further uptake of PV is the assurance of the lifetime energy yield.
- This requires accurate identification of failures in PV systems.
- Failures can occur during the operational lifetime of PV systems due to different factors.
- Such failures decrease the output power of the PV system.

Motivation

- Need to ensure optimal performance and lifetime output of PV systems.
- Development of advanced condition monitoring algorithms that will significantly improve quality of operation of PV systems.

IPERMON

Partners: Gantner Isntruments and University of Cyprus
Project: IPERMON [Solar-ERA.net project]
Budget: €400,000
Duration: 36 Months
Weblink:

http://www.pvtechnology.ucy.ac.cy/projects/ipermon/

Development of innovative condition monitoring platform (algorithms and devices to quantify performance loss, diagnose faults and estimate degradation from acquired data).

State-of-the-art

- Visual inspection is the simplest method to detect visible failures.
- The most popular technique for failure diagnosis is image analysis.
- Methods based on advanced data analysis of electrical parameters are becoming increasingly popular.

Advanced Failure Diagnosis - Approach

Experimental apparatus

07/05/2018 12

Emulation of failures

Simulation of electrical characteristics

- Parametric and non-parametric simulation models
 - Empirical models
 - Data-driven models (machine learning)

14

Failure detection stage - Comparative algorithm

Failure detection stage - Failure verification

• 3σ method

• 3σ control chart

Failure detection stage - Failure verification

• Power-irradiance diagnostic plot

Measured
 Predicted

1000 F. F. Statestation Normal conditions 750 Power (W) 500 False alarm 1 3 - 2 + 2 + 7 + P Fault conditions 250· 0 -250 750 500 1000 Irradiance (W/m²)

Influential Obs by Cooks distance

Failure classification stage – Supervised Learning

- Supervised learning processes (K-NN, SVM and FIS)
- Accuracy Metric Binary confusion matrices

Failure classification stage – Unsupervised Learning

• Unsupervised learning process based on Fuzzy Logic Rules (FLR)

Results - Open-circuit fault

Fuzzy Logic Rules (unsupervised)

- $P_{DC measured} \leq TL = 2\% \cdot P_{DC simulated}$
- $V_{DC measured} \ge TL = V_{OC} \cdot (1 + \gamma(T_m 25))$
- $I_{DC measured} \leq TL = 1\% \cdot I_{DC simulated}$

Supervised models	Classification accuracy
k-NN	99.2%
SVM	100%
Fuzzy Logic	100%

Results - Short-circuit fault

Fuzzy Logic Rules

•
$$P_{DC \ measured} \leq TL = P_{DC \ simulated} \cdot \left(1 - \frac{N_d}{N_t}\right)$$

•
$$V_{DC measured} \leq TL = V_{DC simulated} \cdot (1 - \frac{N_d}{N_t})$$

• $I_{DC \ measured} \geq TL = 90\% \cdot I_{DC \ simulated}$ where N_d is the number of shorted modules and N_t is the total number of the modules in the string

Supervised models	Classification accuracy
k-NN	99.2%
SVM	100%
Fuzzy Logic	100%

- Measured - - TL

Results - Inverter failure

Fuzzy Logic Rules

- $P_{DC measured} \leq TL = 2\% \cdot P_{DC simulated}$
- $V_{DC measured} \ge TL = V_{OC} \cdot (1 + \gamma(T_m 25))$
- $I_{DC measured} \leq TL = 1\% \cdot I_{DC simulated}$

Supervised models	Classification accuracy
k-NN	98.5%
SVM	100%
Fuzzy Logic	100%

Results - Bypass diode failure

Fuzzy Logic Rules

- $P_{DC measured} \leq TL = P_{DC simulated} \cdot (1 \frac{D_d}{D_t})$
- $V_{DC measured} \leq TL = V_{DC simulated} \cdot (1 \frac{D_d}{D_t})$
- $I_{DC measured} \ge TL = 90 \% \cdot I_{DC simulated}$

where D_d is the number of defective diodes and D_t is the total number of diodes in the string

Supervised models	Classification accuracy
k-NN	95.3%
SVM	96.15%
Fuzzy Logic	95.7%

Results - Partial shading

Fuzzy Logic Rules

• $P_{DC measured} \leq TL = P_{DC simulated} \cdot (1 - \frac{C_d}{C_t})$

•
$$V_{DC measured} \ge TL = V_{DC simulated} \cdot (1 - \frac{C_d}{C_t})$$

• $I_{DC \ measured} \geq TL = I_{DC \ simulated} \cdot (1 - \frac{C_d}{C_t})$ where C_d is the number of shaded cells and C_t is the total number of cells in the string

Supervised models	Classification accuracy
k-NN	94.7%
SVM	98.6%
Fuzzy Logic	97.8%

Results - Failure classification accuracy

	Failures					
Supervised Models	Open-circuit	Short-circuit	Partial shading	Inverter shutdown	Bypass diode	
k-NN	99.2%	98.4%	94.7%	98.5%	95.3%	
SVM	100%	100%	98.6%	100%	96.15%	
Fuzzy Logic	100%	99.2%	97.8%	100%	95.7%	

Conclusions and Future work

- The developed failure detection stage was capable of detecting accurately the faults upon their occurrence.
- The classification models showed high accuracy of classifying each failure occurrence.
- Best performing classification algorithm in our investigation: SVM
- By integrating these algorithms on the monitoring systems, optimal level of operation of PV plants will be maintained thus reducing O&M costs and hence, LCOE.
- Future work will include the verification of the algorithms on large-scale PV plants, thus we are in search for relevant data.

EU COST Action PEARL-PV: Performance and Reliability of Photovoltaic Systems: Evaluations of Large-Scale Monitoring Data

SAVE THE DATES!!! Seminar of Working Group 1 and Training School (PV Performance Monitoring and Modeling) from the 22nd - 26th October in Nicosia, Cyprus hosted by the PV Technology Laboratory of the University of Cyprus.

More info available on https://www.pearlpv-cost.eu/ and also the poster session of the 2018 PV Systems Symposium!

Research Promotion

Foundation

Ipermon

Dr. Marios Theristis

PV Technology Laboratory University of Cyprus Email: theristis.marios@ucy.ac.cy

More information...

Website: www.pvtechnology.ucy.ac.cy

Highlights Mediterranean Smart Grid Technology Platform formation. Read more

HUpcoming Event

Provisional Agenda

Conercon - UCY strengthen their collaboration Read more ...

PV-NET Final Conference - 8 May 2015

i Latest News

- DERIab Presents Its Activity Report 2014/2015.

- National Technical University of Athens and FOSS sign research collaboration agreement.

- FOSS and Alfa Mediterranean Enterprises Ltd ioin forces.

- Pilot Smart Meters with DSM and PV generation under way in Cyprus

- Smart meters and EMF