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Power System Protection ) e

Laboratories

= The protection system and equipment is designed to maintain safe
operation of the grid and reliable service

= Must rapidly and automatically disconnect the faulty sections of the power
network

= Minimize the disconnection of customers

= Conventional power system protection design may not work for high
penetrations of inverter-based PV generation

= Traditional protection systems are designed for large fault currents from
synchronous and induction machines

= Short-circuit modeling and protection of
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= Increasing penetration of inverter-interfaced
resources underscore the need of inverter
models for short circuit studies
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Inverter-Based DG Impacts on Protection

= The legacy protection was not designed for the presence of
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Loss in coordination between protection devices
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Transfer trip strategies
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= 100% inverter-based systems present a new set of challenges
for protection

= |nverters do not provide significant current during faults
= Qvercurrent protection schemes might not detect the fault
= Fault currents can look similar to motor starts or inrush

= With low fault currents, the fault currents are more sensitive to
generation dispatch, complicating coordination
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Power control loop

Current control loop 4




Inverter Short-Circuit Models i) i

= |t is important to have accurate models of inverters for dynamic studies
and protection coordination
= |nitial spike (~0.1ms) depends on filter cap, system impedance, and pre-fault
condition
= Transients during control actions, lasting 2-8ms
= Steady-state fault current based on the current limiter
= Models are challenging to develop because there are stark differences
between manufacturers, single vs. three-phase inverters, PV vs. energy
storage vs. grid forming inverters.
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Inverter Fault Characterization

= Best way to fully characterize inverters for all
transient and steady-state time scales is through

test

ing (Sandia’s DETL)

=  Grid-following inverters generally have very low fault
current contributions (1.1-1.2 of their rated current)

=  @Grid-forming energy storage inverters can deliver 2x

the rated current for about 60 seconds
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Conditions and Settings
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Hardware results
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Testing Inverter Models Using HIL )
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Inverter Protection Challenges i) i

Other Protection Challenges Include:

1. Inverters do not provide zero sequence or negative
sequence fault currents (depending on the controls)

2. Inverters have no inherent inertia, and their transient
responses vary depending on the controls. How does this
impact Power Swing Blocking and Out-of-step Tripping
functions?

3. Inverter fault current response depends on the pre-fault
conditions (e.g. power output level, power factor, etc.), so
they have to be included in the models and analysis




Inverter-Based System Protection ) e,
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= For 100% inverter-based system protection:
= Accurate short-circuit current models are needed
= New protection schemes are required to detect faults

= Sandia is developing protection solutions for inverter-based

systems:

= Holistic approach to address the challenges of distribution system and
microgrid protection under high penetrations of inverter-based DER

= Using fast communication and time-

synchronized measurements from AR LILIE
multiple sensors for communication- Detailed
based or wide-area protection Hodes

= Develop fault location algorithms for D " 4
microgrids and distribution systems coprsecury [ Y o New - Uiy
with high DER penetration and tested SERSES Hodets
algorithms in simulations and HIL Distribution and Microgrid Protection

Adaptive Protection
Fault Location Analysis
DC and AC Protection Schemes 9
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= Power hardware —inverters, PV = Demonstrated adaptive protection
simulator, grid-forming inverters, = Grid-connected, off-grid and microgrid,
energy storage, controllable loads, and networked microgrid reconfiguration
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Protection settings may have to be modified when conditions change
(reconfigurations, load transfers, islanding of a microgrid, etc.)
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As an example, high penetrations of PV ot System
may require different protection settings = iy
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Adaptive Protection Demonstration )
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Controller Adaptive Protection: Controller
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with relay to change setting groups
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Cyber Security for Protection ) e,
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= Cybersecurity is a key challenge to making protection settings adaptive

= Cybersecurity of power system protection in general is very critical to the
reliability of the bulk power system.

= Presently, the prevalent measures being incorporated include firewalls,
intrusion detection systems (IDSs), and security gateway devices (SEL 3620)

= |mprove cyber security posture of the protection with layered approach, pair
device-level solutions with network defense such as intrusion detection
systems (IDSs) and firewalls

=  Working with SEL to detect cybersecurity vulnerabilities and improve security
on their gateways
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Fault Detection and Location Algorithms ) R,
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= We are testing the impact of high DER ‘r—{ Faullocation,
. .. o . 35 Impedance value o

penetration on existing utility fault location . |will change. 2ot
methods and developing new communication- = | o
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= Sandia report in collaboration with ORNL: I N N
“Microgrid Fault Location: Challenges and
Solutions”
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Optimal Protection Design ) e
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Unknown/Not Found

=  Optimal placement of protective devices for oo oy
improved reliability and reconfiguration

Bird ph 220-1056

= Protection design constraints also feeds into
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design of networked microgrids ranstormer (590

Trees

=  Working on optimal protection design for
PNM feeders based on historical outage data . : : .
for frequency, outage time, customers Auerege Time () Per Outzoe
impacts, etc.
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DC Microgrid Protection

4 N

Investigating protection
system design for DC
microgrids to address

protection-related challenges
of integrating DC microgrids

to distribution systems
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= At high PV penetrations, or especially 100% inverter-based systemes,
conventional protection modeling and design is not sufficient

= Accurate short-circuit current models are needed
= New protection schemes are required to detect faults
= Sandia is developing Advanced Protection for Inverter-Based Systems

= Holistic approach to address the challenges of distribution system and
microgrid protection design with high penetrations of inverter-based DER

= HIL demonstration with inverters, relays, and communication is important
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Fault Location Analysis
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QUESTIONS?

Sandia National Laboratories
Matthew J. Reno
mjreno@sandia.gov
505-844-3087
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