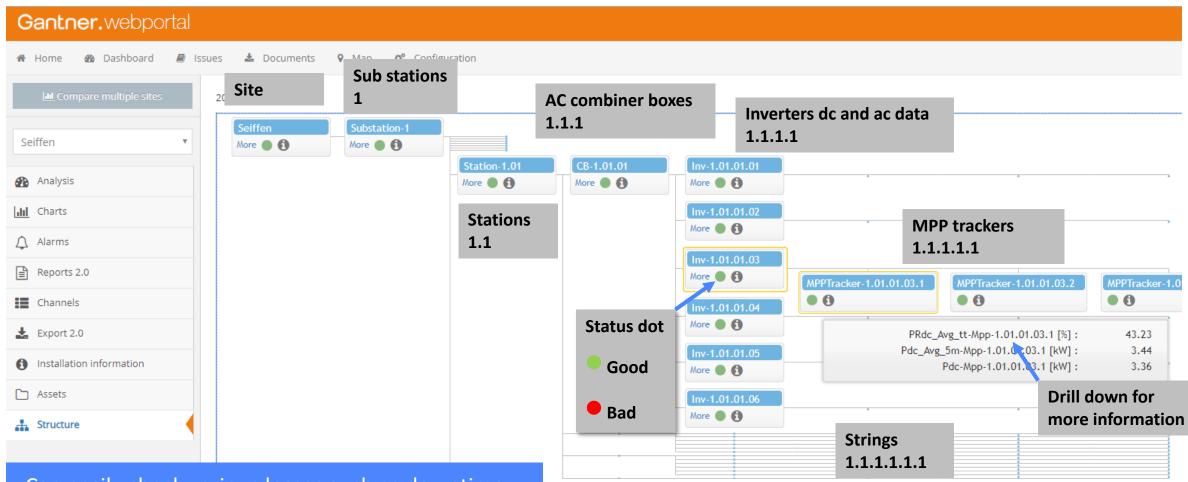
Advanced PV performance analysis on modules and power plants using cloud-based processing

Juergen Sutterlueti¹ and Steve Ransome²

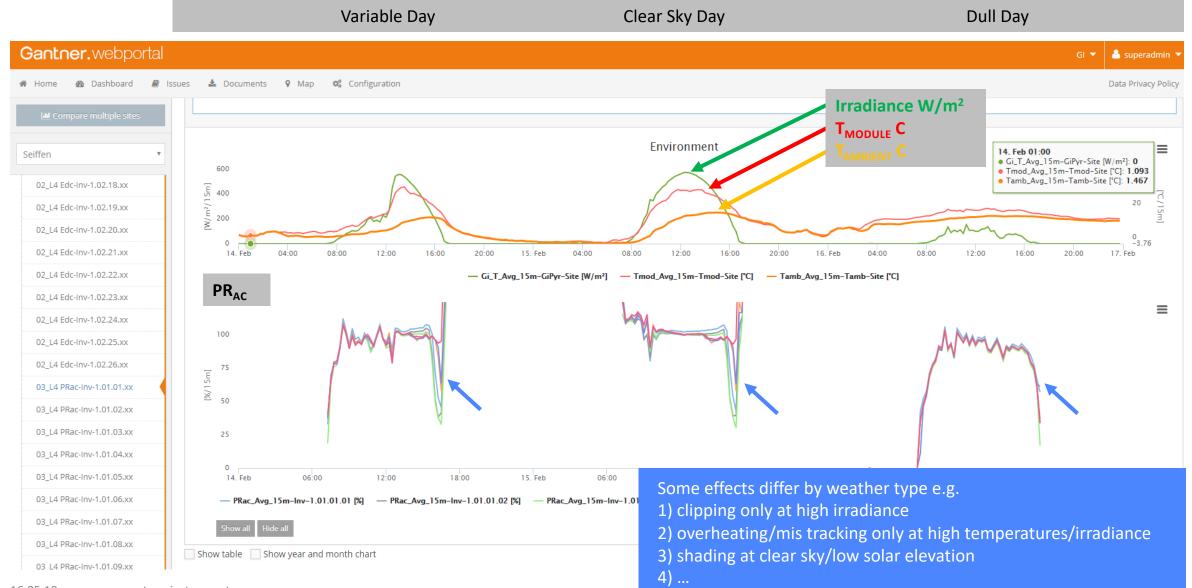
¹Gantner Instruments GmbH, Austria

²Steve Ransome Consulting Ltd, U.K.



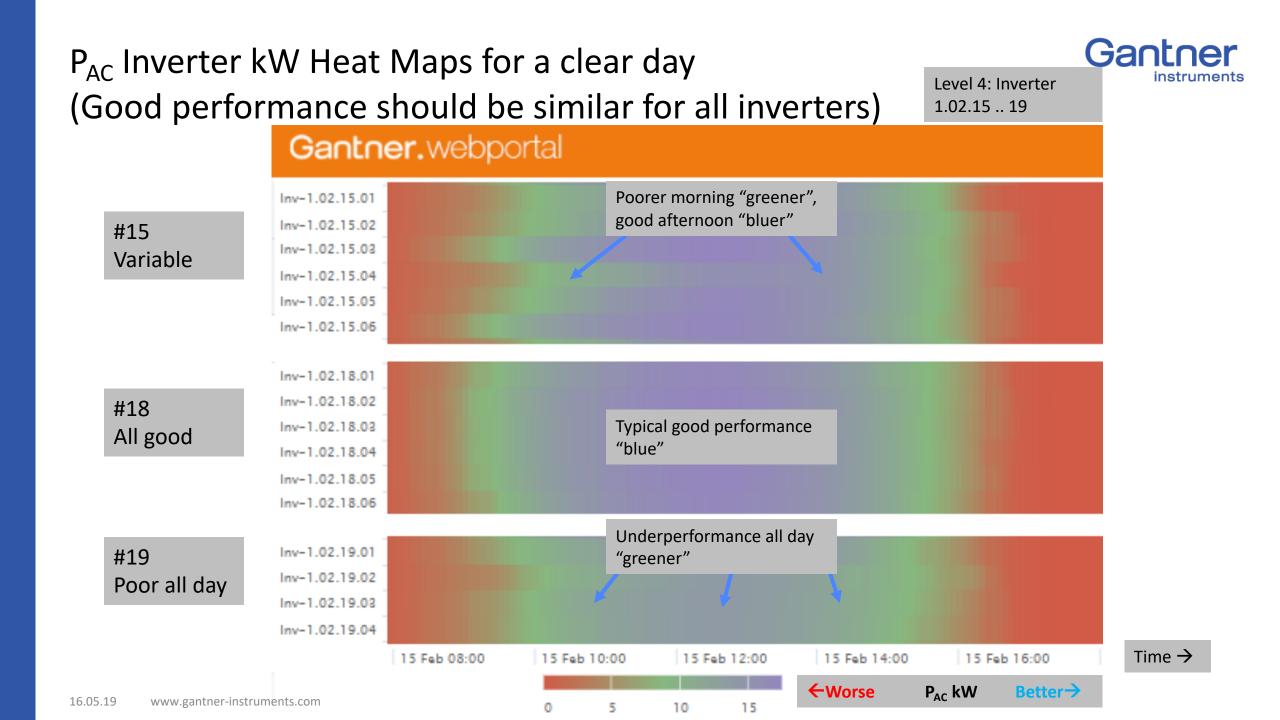
Do we already utilize available PV power plant data sufficiently?

Checking performance at 7 different levels on a power plant



Can easily check various losses such as downtime, mismatch, shading, tracking per component ...

Monitoring a large array – looking at different weather type days



Compare individual P_{AC} with mean of >150 Inverters (usually look for faulty or worst ones for more analysis)

Gantner.webportal

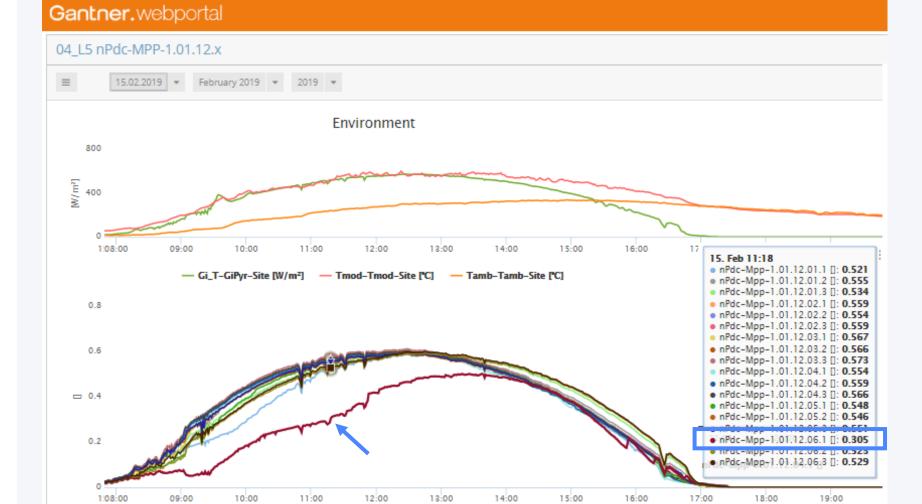
Count Mean	Std. deviatio	on (k=2)	Rel. deviation	n [%	b] min/max	OK range	e (fro	om mean) [%] [ab	s]	Median	
156/156 6.98	0.35355		-20.53 / 5.31			90.0000				7.08	
Component 🔶	Pac [kW] 🔺	Pac Differe	ence [kW]	ф	PacRel. deviati	on [%]	φ.	Range [%] 🔶	PacS	itatus []	Φ
Inv-1.02.19.05	5.549	-1.433			-20.53				low		
Inv-1.01.08.04	5.603	-1.379			-19.75				low		
Inv-1.02.19.02	5.608	-1.374			-19.68				low		
Inv-1.02.19.04	5.673	-1.309			-18.75				low		
Inv-1.02.19.03	5.764	-1.218			-17.45				ok		
Inv-1.02.19.06	6.031	-0.951			-13.63				ok		
Inv-1.02.19.01	6.233	-0.749			-10.73				ok		
	-										

P_{AC} Inverters 1.01.12#1..6

#6 is worse in the morning than #1..5, better afternoon

Why is inverter #6 different?

Level 4: Inverter 1.1.12.xx

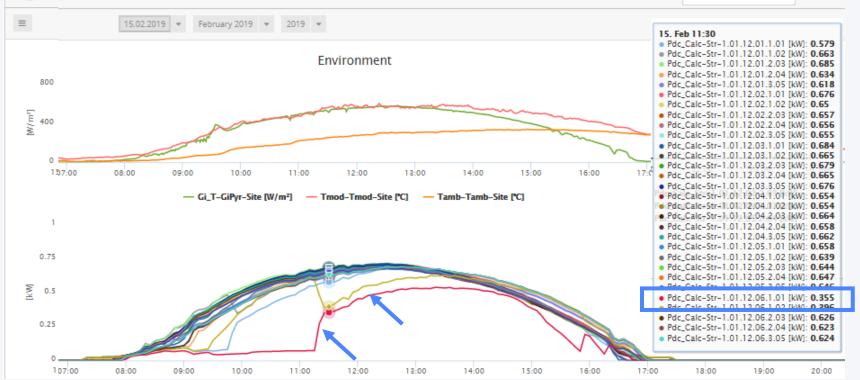


nP_{DC} MPP Trackers 1.01.12 #01.1-06.3

MPP #06.1 poor in the morning

Gantner

Level 5: MPP Tracker 1.1.12.6.xx



P_{DC} Strings 1.01.12 #01.1.01-06.3.05

Showing two misbehaving

Gantner.webportal

01_L6 Pdc-Str-1.01.12.01-06.x

Level 6: String 1.1.12.6.01.xx Idc(top) and Vdc(bott) for Strings in Inverter 1.01.12

Faults get more apparent as we zoom in closer with fewer modules

Can now investigate at string level reason for unusual behaviour

Gantner.webportal

Gantner

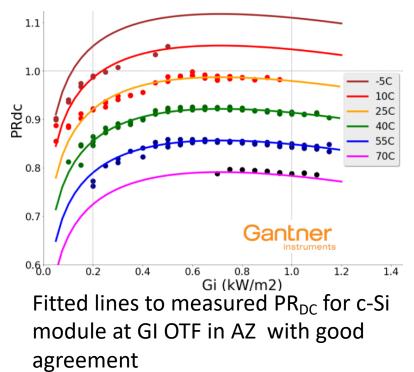
Level 6: String

1.1.12.6.01.xx

instruments

How to find faults automatically

... use the Mechanistic Performance Model (MPM)



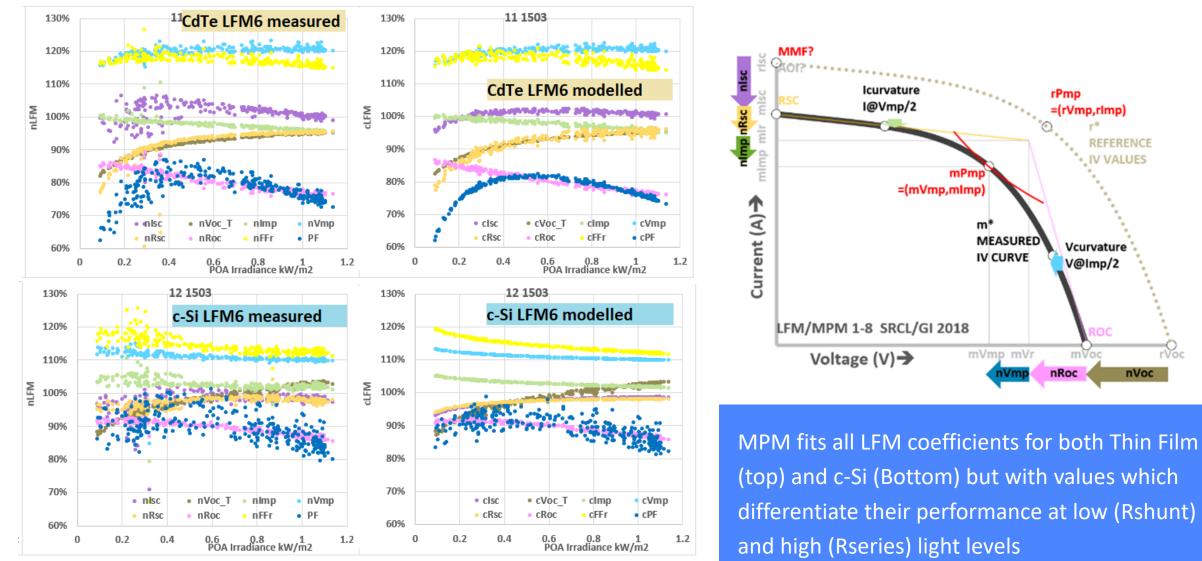
- ... to fit measured PR vs. Irradiance and Tmodule
- look for discrepancies or poor fit coefficients

$PR_{DC} = C_1 + C_2 \times dT_{MOD} + C_3 \times Log_{10}(G_I) + C_4 \times G_I + C_5 \times WS$

MPM Coefficients are meaningful, orthogonal, robust and normalised

	Usual approx. Range	Coefficient Dependency	Comment	Unit
C ₁	80% to 100%	Performance Tolerance	Actual/Nominal	%
C ₂	-0.2% to -0.5%/K	(Tmod-25)C	Temperature Coefficient	%/K
C ₃	0 to 20%	$\log_{10}(G_I)$	Low light fall (~Voc, Rshunt)	%
C ₄	-20% to 0%	Gı	High light fall (~Rseries)	%
C ₅	-2% to 2%	Windspeed	Windspeed correction	%/(ms ⁻¹)

... use the Mechanistic Performance Model (MPM)


- ... to fit measured PR vs. Irradiance and Tmodule
- look for discrepancies or poor fit coefficients

$PR_{DC} = C_1 + C_2 \times dT_{MOD} + C_3 \times Log_{10}(G_I) + C_4 \times G_I + C_5 \times WS$

MPM Coefficients are meaningful, orthogonal, robust and normalised

	Usual approx. Range	Coefficient Dependency	Comment	Unit	1.4 v 1.2 K 1 1 1 v 1.2 v
C ₁	80% to 100%	Performance Tolerance	Actual/Nominal	%	O.6 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
C ₂	-0.2% to -0.5%/K	(Tmod-25)C	Temperature Coefficient	%/K	
C ₃	0 to 20%	$\log_{10}(G_1)$	Low light fall (~Voc, Rshunt)	%	Image: Second struments Image: Second struments
C ₄	-20% to 0%	Gı	High light fall (~Rseries)	%	-0.4
C ₅	-2% to 2%	Windspeed	Windspeed correction	%/(ms ⁻¹)	Const ■dTmod ■Ln(Gi) ■Gi ■WS ■1/Gi ■0 ■0PRdc

Fitting all 6 LFM parameters (nlsc, nRsc, nlmp, nVmp, nRoc & nVoc) Gantner with the MPM $nLFM = C_1 + C_2 \times dT_{MOD} + C_3 \times Log_{10}(G_I) + C_4 \times G_I$

16.05.19 www.gantner-instruments.com

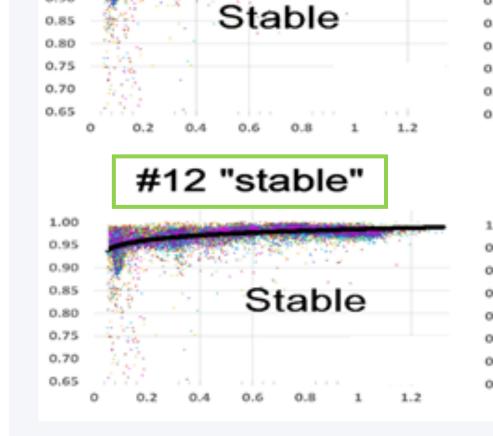


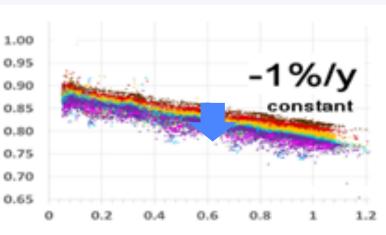
2010

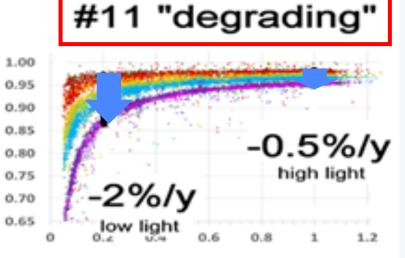
2015

2016

nRsc ~Rshunt

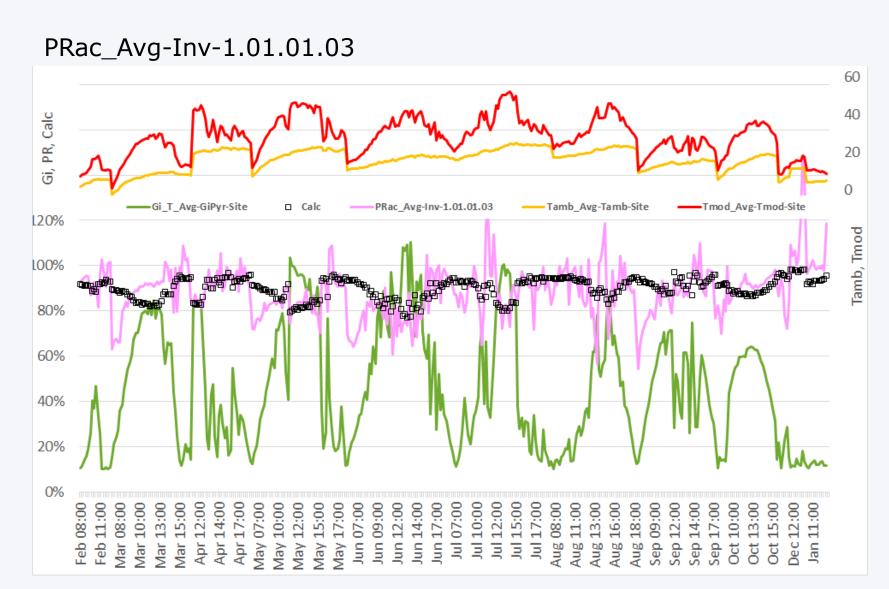





1.00

0.95

0.90



Fitting models to measured data vs. time (1year, UK)

Scattered PR_{AC} due to transient weather but good average fit

PR_{AC}.fit = MPM function (Irradiance, Tmodule, Windspeed ...)

measured data vs. irradiance (1year, UK)

Fitting models to

Scattered PR_{AC}, but note clipping at high irradiance > 900W/m² needs to be modelled

PR_{AC}.fit = MPM function (Irradiance, Tmodule, Windspeed ...) PRac_Avg-Inv-1.01.01.03

Conclusions on fitting models to measured data

POWER PLANT LEVELS

0) Site

- 1) Station
- 2) -- SubStation
- 3) ---- AC Combiner box

4) ---- Inverter

5) ----- MPPT

6) ----- String

7) ----- Module

LARGE POWER PLANTS – MULTIPLE MODULES

- AC SIDE: summing power from multiple inverters means "a few" faults at inverter level just reduce output slightly
- **INVERTER:** when working will they have similar performance, so search for outliers with poor performance
- DC SIDE: study MPPT and String data on "poorer inverters" to identify problems (and fix them)
- Need to check for shading, clipping, component downtime etc. when fitting power plants
- Check distance from irradiance sensor to array for cloud front delays in variable weather

SINGLE MODULE IV DATA DC

• Can understand and identify any poor behaviour and changes but must allow for variability and wiring losses

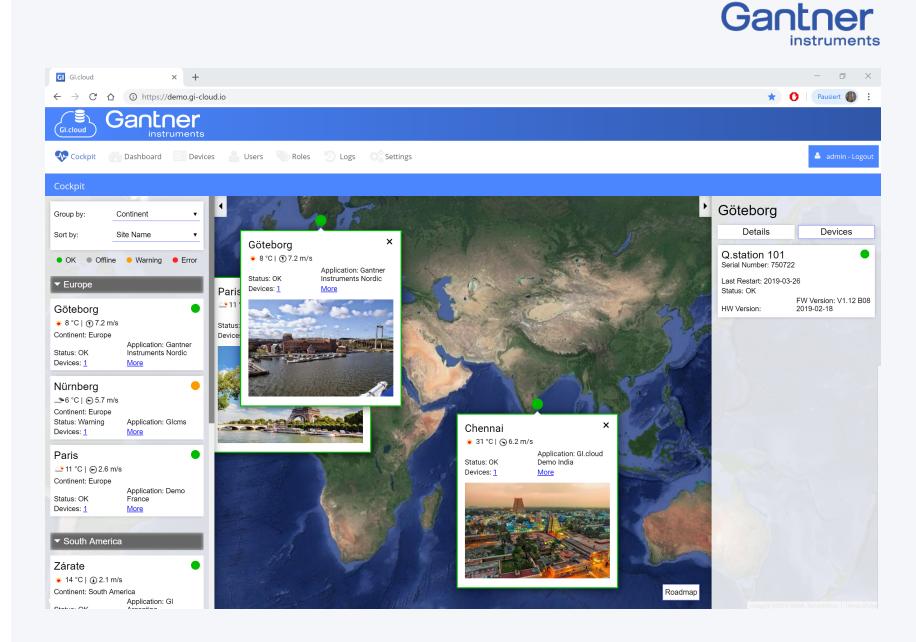
Utility Scale Example

- Ben Ban, Egypt; Monitoring and grid control
- Project size: 230MW, 1-axis tracking
 - 1400 Combiner boxes, 60 x 2.5MW Inverters, 24 Irradiance sensors/weather stations
 - DC side: 30,000 String currents, 1,400 voltages
- Parameters:
 - 70,000 measured
 - 140,000 Normalized and calculated parameters
 - E.g. PR per component, Aggregation of I, V for each level, limit checks, warning for degradation, temperature limits, ...
 - Each parameter has different aggregation methods per time interval (Average, Min, Max, Standard deviation) for direct Loss Factor Model use
- Raw data volume:
 - 400 GB per year
 - 8TB for 20years

How to store and process very large datasets cost efficiently?

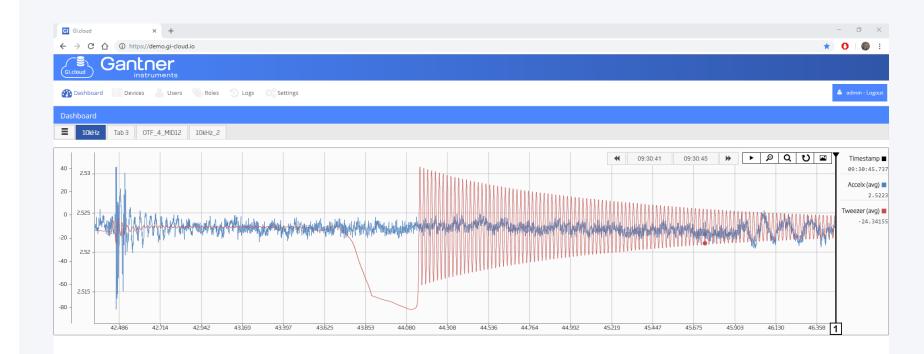
Substantial demand for high performance edge computing in a growing market

Drivers:


- Industry 4.0, big data, AI, ML all need high quality data sources
- More distributed and adaptive monitoring and control applications
- Requires better and faster utilization of data streams
- Flexible data architecture to meet customer needs

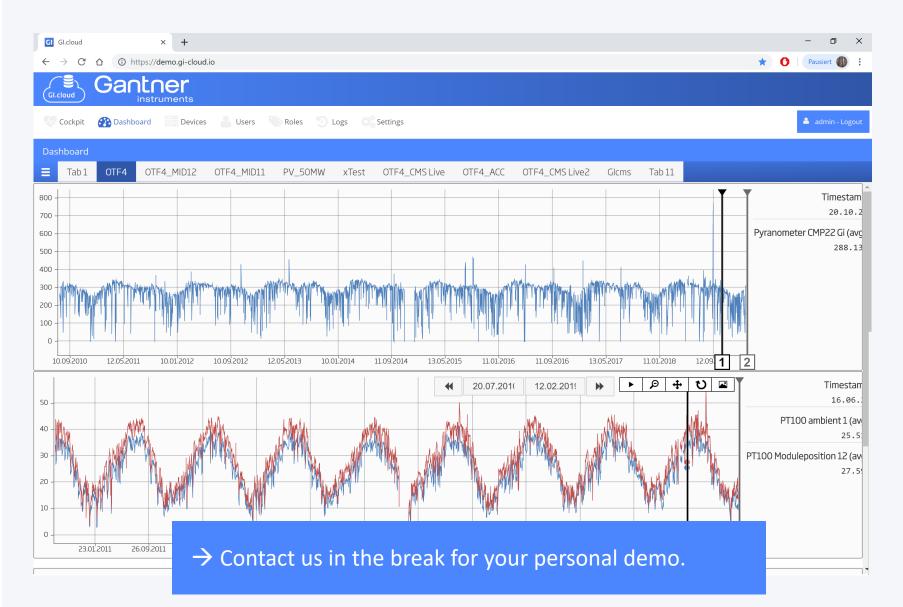
Gantner 0

Technology and market designers understand the need for powerful cloud and edge computing in combination with adaptable high resolution measurement down to microseconds (μ s).


Real time data visualization

- From controller to cloud platform
- Create our own dashboards (read only, read/write)
- Display Real time charts (different controllers, merged data streams)
- Zoom into the single event/Raw data
- Cockpit: see device location, status, warnings, meta data

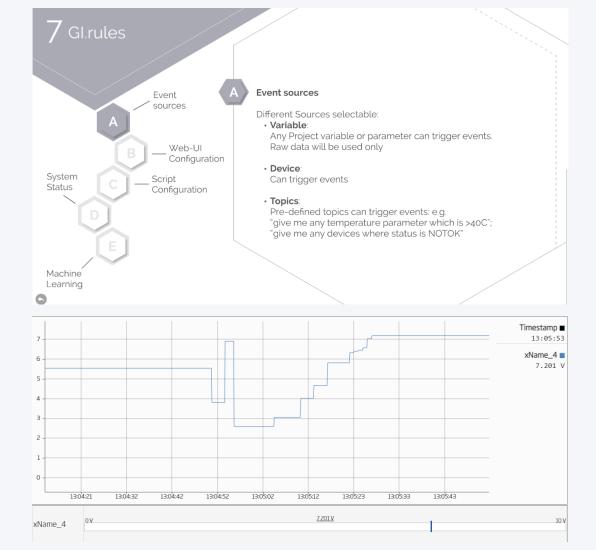
Real time data visualization


- From controller to cloud platform
- Create our own dashboards (read only, read/write)
- Display Real time charts (different controllers, merged data streams)
- Zoom into the single event/Raw data
- Cockpit: see device location, status, warnings, meta data

Lifetime data

- Efficient storage of full life cycle data streams, e.g. 30 years of device data
- Easy data access thanks to hot and cold data storage from 30 years to microseconds
- Store and visualize triggered data and different sampling intervals

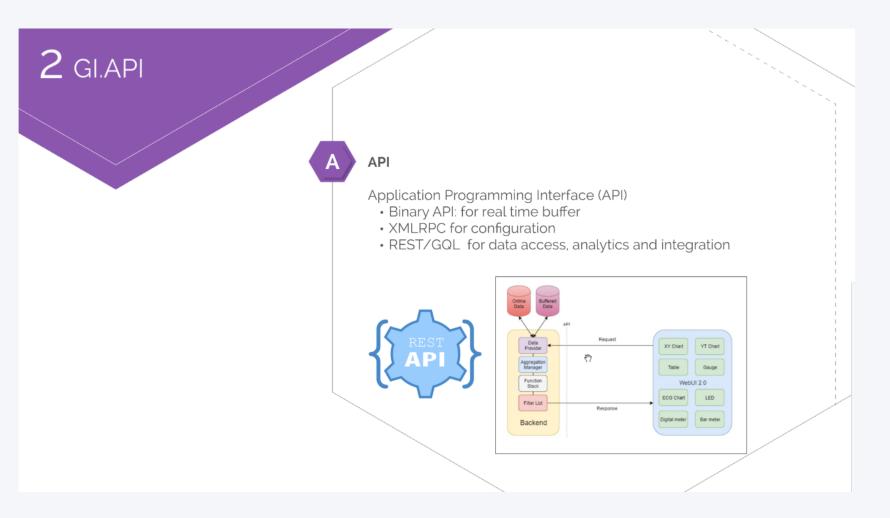
Instant reaction to data



Rules

- Configure predefined rules that react to full data stream (also MHz and non time synchronized)
- Different event sources:
 - Variable Each Raw data time stamp will be checked
 - Device

Can trigger events


- Topics
 - "pre defined topics can trigger event. E.g. "give me any temperature parameter which is >40C
 - Give my any device where status is "NOT OK"
- Configure and view notifications
- Reporting: triggered report creation with real time data
- Bidirectional communication with devices

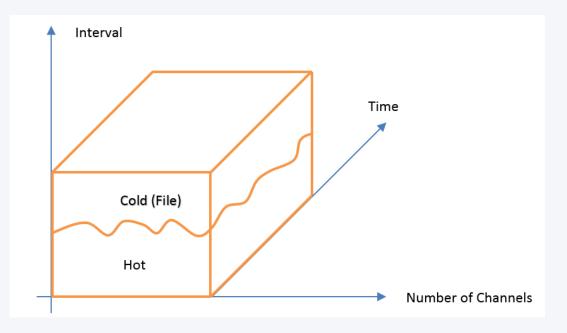
Integration

- APIs: customer & partners can integrate GI.cloud backend into their IT stack
- Build customized Front end applications (java script)
- 3rd party data integration API; visible on the fly on frontend [e.g. 50MW PV data]
- Cloud API Examples:
 - Machine Learning performance prediction (Cyprus, Project IPERMON)
 - VKW (Austria)

Device Management

- Access your controller from Gl.bench anywhere, anytime with Gl.cloud remote service
- Manage all your devices from one cloud instance
- Show status, data traffic, alerts, logs – from all remote devices
- Only internet port needed (https, port: 443, encrypted)
- Forget about VPN, additional fees, port discussion with customers IT, ..

Gl.cloud		nstruments													
Cockpit	💮 Dashboa	ard 📑 Devices	Users Roles	Э	Logs 🛛 Setting	ţS									💄 admin - L
evices	DeviceTure	Firmulare	Last Loavthoat Time	Name	Auth Token:		JSDezaylpydd	9745AØVUV0	IONATIVIQU	LMTGVALE					
	DeviceType Q.station 101 T	Firmware V2.12 B08 2019-02-15	LastHeartbeatTime 26.03.2019 21:04:49	OSeri											
		V2.12 B08 2019-02-15				📥 Dow	nload autorun.	sh							
	Quadion for f	12.12 000 2019 02 19	20.00.2019 21.04.42	, orto		Conn	e the generated au ntect USB stick to (device and rebo	pot.						
					ID:		e should automa: 1343-11e9-ado	-		l service!					
					System Time:	2019-03-2	6120:04:512								
					Location:	0, 0 (0 m)									
						🔰 Shov	м Мар								
					Health:		e / Total / Used			B / 816 MI	3				
						Realtime / User / Ave	′ Avg / Overloa erage:	ds: 75 % / 75 0 % / 2 %							
					Traffic		Net	workTraffic							
						Port	In	C	Dut	Start		Stop		LastRestart 🌡	Starts
						1200	515,40 MB	30,44	MB	22.03.20	19 12:53:36	26.03.2019	20:33:37	26.03.2019 20:33:40	78
					Error	Timesta	amp ↓	Туре	Count	Code	Object		Message		
						26.03.2	019 21:04:51	WARNING	0	-4406	QStationDa	ataLogger_0	No config	gured data Storage availat	ole!
						26.03.2	019 21:04:50	ERROR	0	-5055	QStationSy	stem	CONFIGU	JRATION FILE ERROR	
						26.03.2	019 21:04:50	ERROR	0	-5067	QStationSy	stem	DATA LO	GGER COMBINED ERROR	
							019 21:04:42		1107	-4401		atal ogger 0			

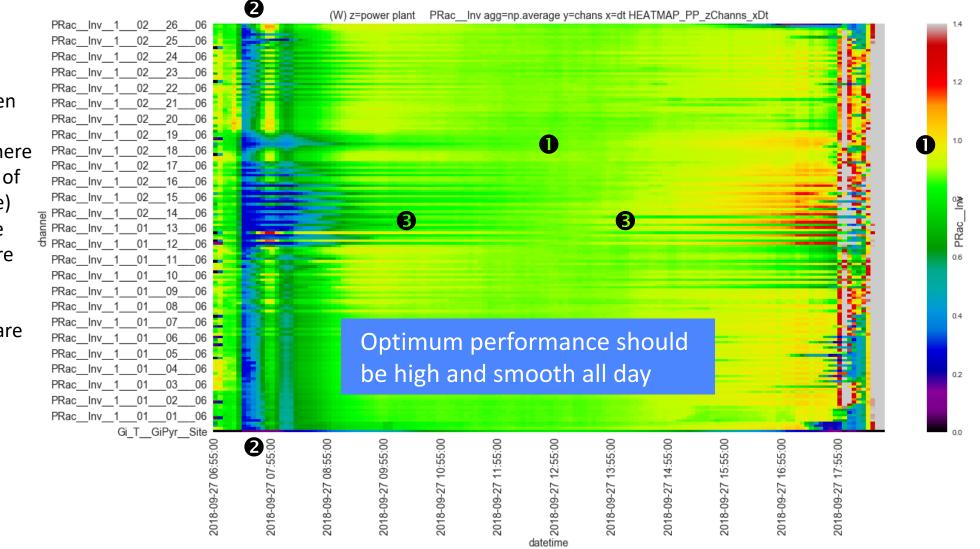

Backend Architecture

- Requirements:
 - Build a universal efficient data backend for MHz and asset life time data
 - Browser based only
 - Single / Multi-Tenant
 - No time resolution limitation (micro-seconds to minutes)
 - (Re-) configurations of Hardware visible on the fly
- Generic, normalized Backend scalable from MHz sampling speed to long term monitoring over decades.
- Efficient data storage and data access for optimize running cost
 - Raw data ("cold data") in distributed streaming platform ("Ringbuffer") by Apache Kafka
 - "hot data" in fastest time series database by Crate.io
 - Project specific aggregation (mean, maximum, minimum, standard deviation), data replay
 - Data backup included
- ONE API for data access
- Enrichment for KPIs or customer specific
- Provides scalability, redundancy and resiliency

Distributed Streaming Platform and Database

Scalable
 Clustered

Gantner


Analytic Snapshot based on GI.cloud data backend

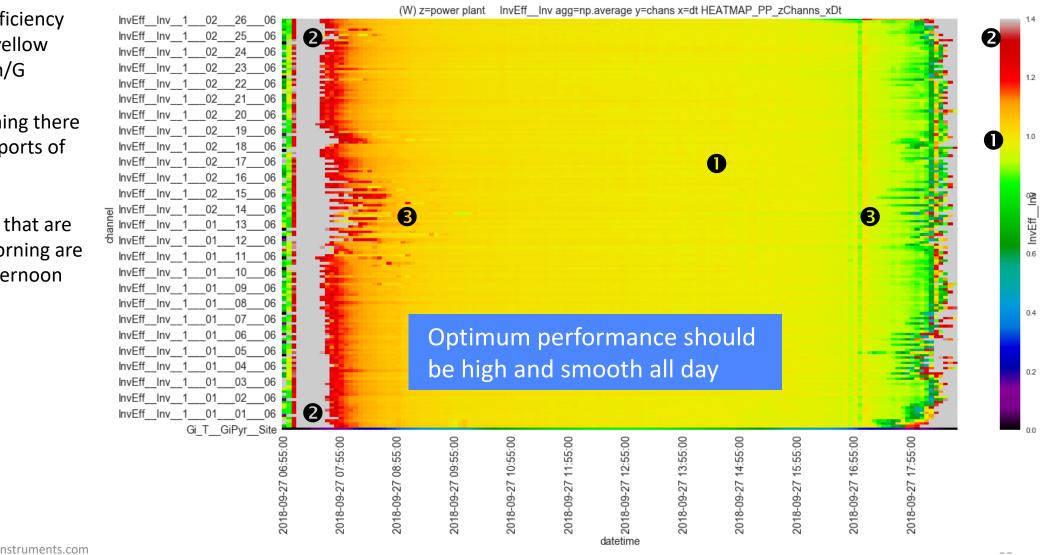
Gantner How to compare PV Performance for many different components over time Performance ratio (colours red=best blue=worst) for 156 inverters \uparrow and time \rightarrow

PR = Pmeas/Pnom/G

- High performance ratio (near 100%) is light green to yellow
- **❷**Early morning <08:00 there may be some problems of shading or turn on (blue)
- **B** Some inverters that are worse in the morning are better in the afternoon>15:00 – it's likely that these arrays are facing westwards

instruments

Comparing standard deviation of similar components – use to find faults StdDev of PR (colours blue=worst black=best) for 6x26 inverters A and time

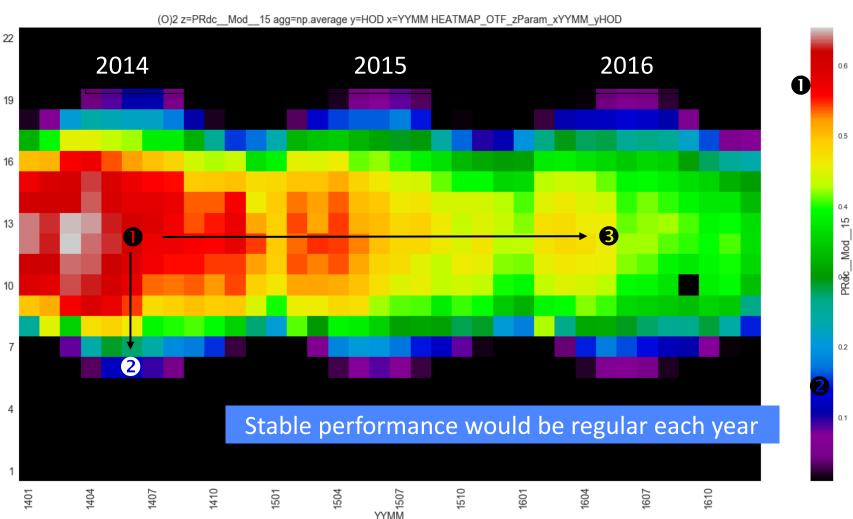


- Uniform performance has low stdev (black)
- Higher stdev morning from the inverters including some west facing
- Higher stdev from same inverters in the afternoon
- Lowest trace shows normalised irradiance 0 to 0.8kW/m2

(W) z=power plantPRac_Std_x_Inv agg=np.average y=chans x=dt HEATMAP_PP_zChanns_xDt PRac_Std_x_Inv_1__02__26__x PRac_Std_x__Inv__1__02__24___x PRac_Std_x_Inv_1_02_22_x PRac_Std_x_Inv_1__02__20__x 0.8 PRac_Std_x_Inv_1_02_18__x PRac_Std_x_Inv_1_02_16__x PRac_Std_x_l⊮v ➡ PRac_Std_x_Inv_1__02__14___x (3) (2)ອັ ອ PRac_Std_x_Inv__1__01___12___x PRac_Std_x_Inv_1__01__10__x PRac_Std_x_Inv_1__01__08___x PRac_Std_x_Inv_1__01__06__x **Optimum stdev performance** 0.2 PRac_Std_x__Inv__1__01__04___x should be low and smooth all day PRac_Std_x_Inv_1_01_02_x 4 Gi_T_GiPyr_Site 2018-09-27 10:55:00 2018-09-27 11:55:00 2018-09-27 13:55:00 8 2018-09-27 07:55:00 2018-09-27 14:55:00 2018-09-27 15:55:00 2018-09-27 16:55:00 2018-09-27 08:55:00 2018-09-27 09:55:00 2018-09-27 12:55:00 06:55: 2018-09-27 2018-09-27 datetime

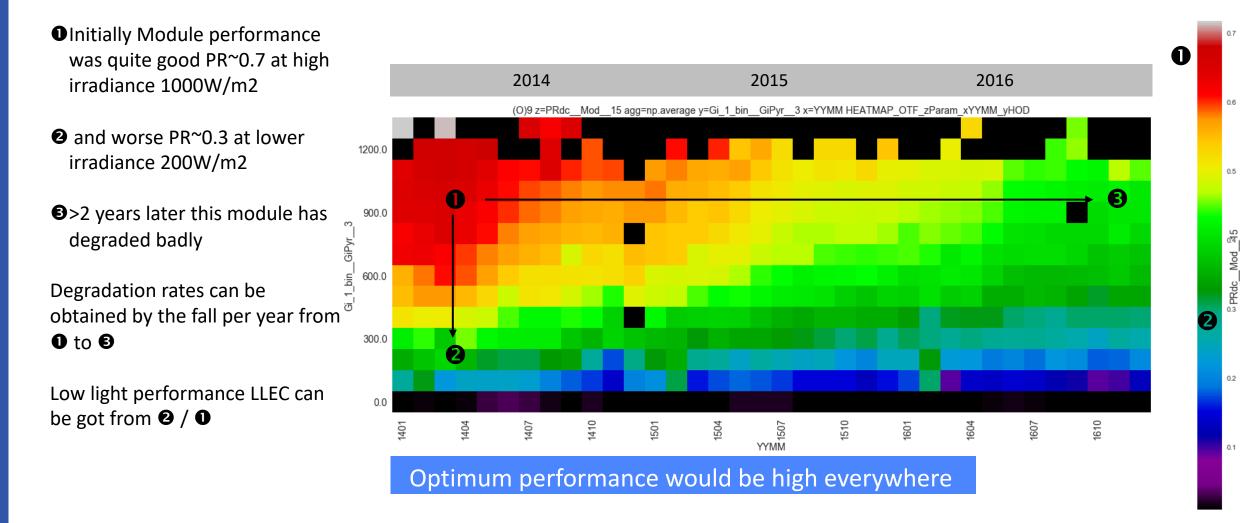
How to compare Inverter Efficiency for many different components over time Gantner Inverter Efficiency (colours red=best blue=worst) for 156 inverters And time

- High Inverter efficiency (near 100%) is yellowPR = Pmeas/Pnom/G
- Very early morning there appear to be reports of <100%</p>
- Some inverters that are better in the morning are worse in the afternoon

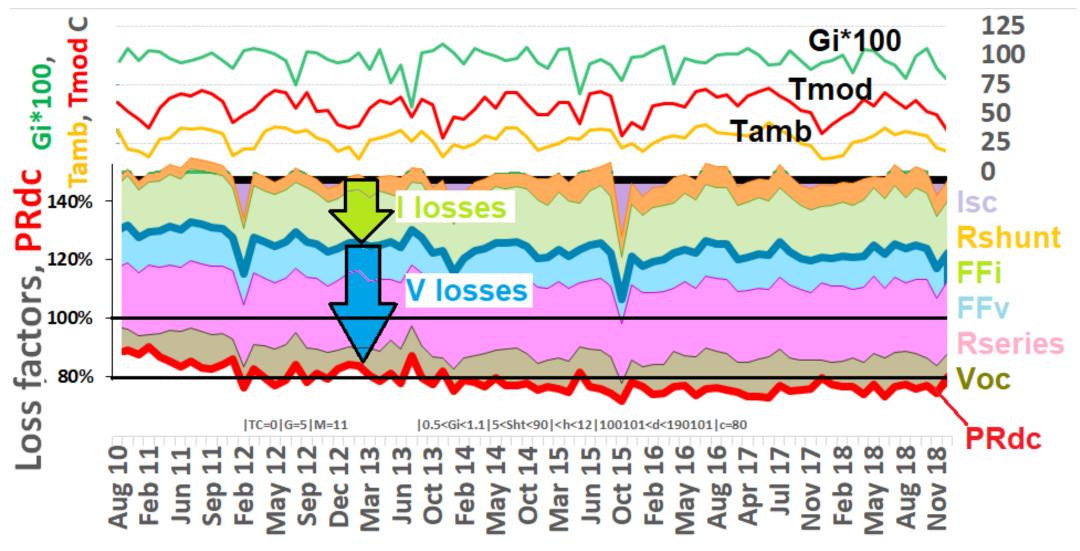


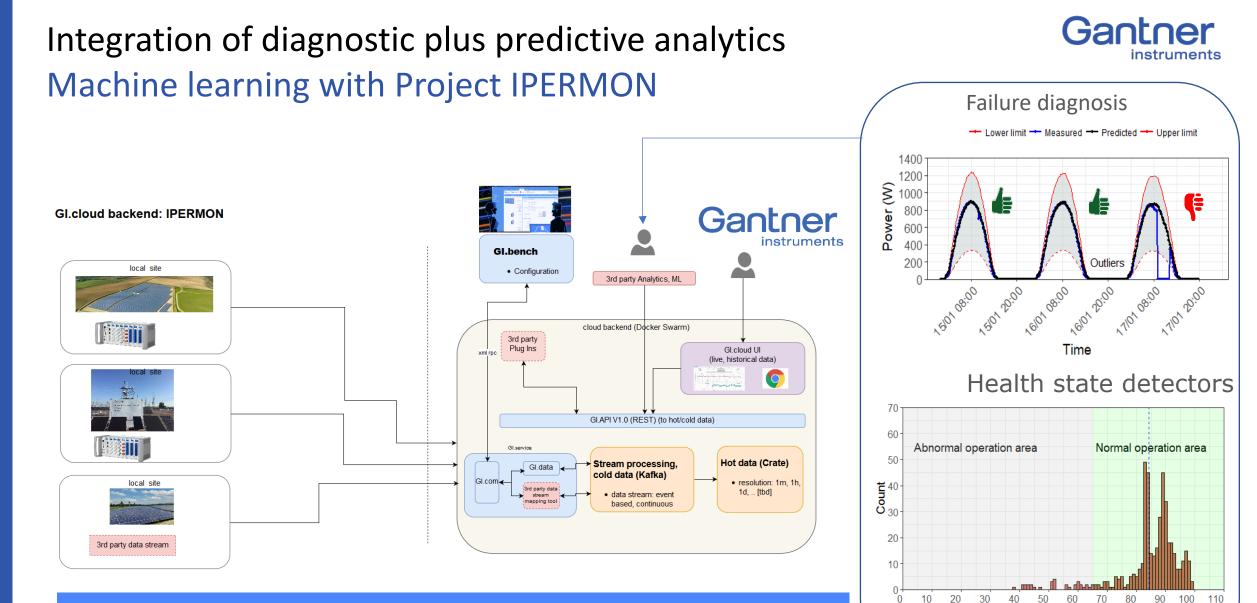
Determining performance stability PR_{DC} by time of day and month Average PRdc by hour of day 1...24 HOD↑ and YearMonth 1401...1612 MOY→

- 1st Summer 1406 Module performance although poor was highest during the day ~0.6
- it was worse at lower irradiance ~0.2
- S>2 years later 1606 this module has degraded badly and is below 0.45


Degradation rates can be obtained by the fall per year from to S e.g. 0.6 to 0.45

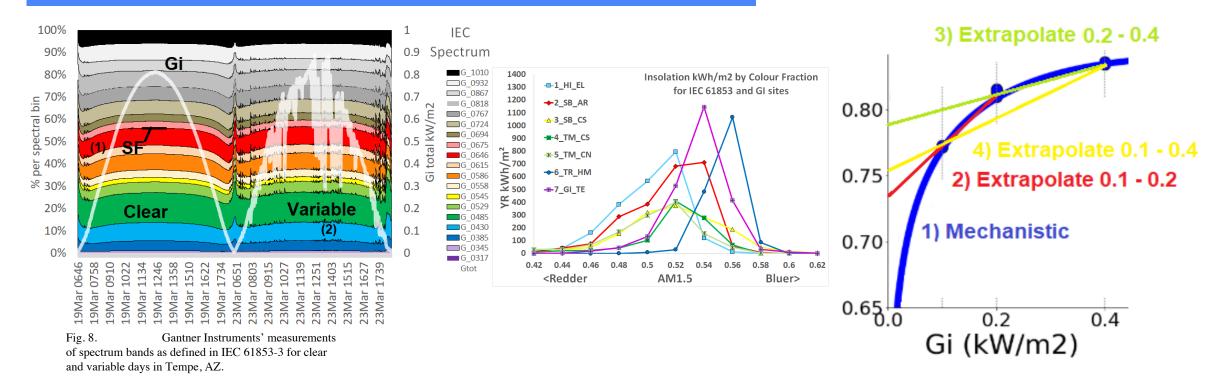
Note longer summer days give "taller" datasets 06:00 to 19:00 GОН


Determining performance stability PR_{DC} by irradiance and month Average PR_{DC} by Irradiance 0 ... 1200W/m² G_i and YearMonth 1401...1612 MOY



Degradation analysis

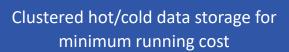
Drill down to responsible parameter to get meaningful conclusions


See next talk from Marios Theristis (University of Cyprus): "Performance Evaluation of PV Power Predictive Models for Realtime Monitoring"

Performance Ratio (%)

For more information on using MPM/LFM with the GI OTF data checking IEC61853 1-4 :

46th IEEE (PVSC) Thursday, June 20th ORALS - AREA 8: SYSTEM PERFORMANCE AND MODELS @09:45 650 **"Checking the new IEC 61853.1-4 with high quality 3rd party data to benchmark its practical relevance in energy yield prediction"** Steve Ransome, Juergen Sutterlueti.


16.05.19

Conclusion

- Accurate and fast PV measurements using a scalable, distributed cloud backend enable an easy understanding of performance for optimization, loss analysis and fault finding using mechanistic models (LFM and MPM) and ML techniques
- System should be able to run as cloud or local installation and allows fast and flexible data access
- APIs should allow read/write access to the backend and connection of own analysis features (not visible to platform vendor)
- PVPMC libraries are included and can be applied to any data source

Efficient time series data processing (down to micro-seconds) due to scalable platform

← 1ms →

APIs designed for fast integration into customers' platform and data

access

"Without data you're just another person with an opinion."

W. Edwards Deming, Data Scientist

Turn Data Into Information. **Turn Information Into Customer Benefits**

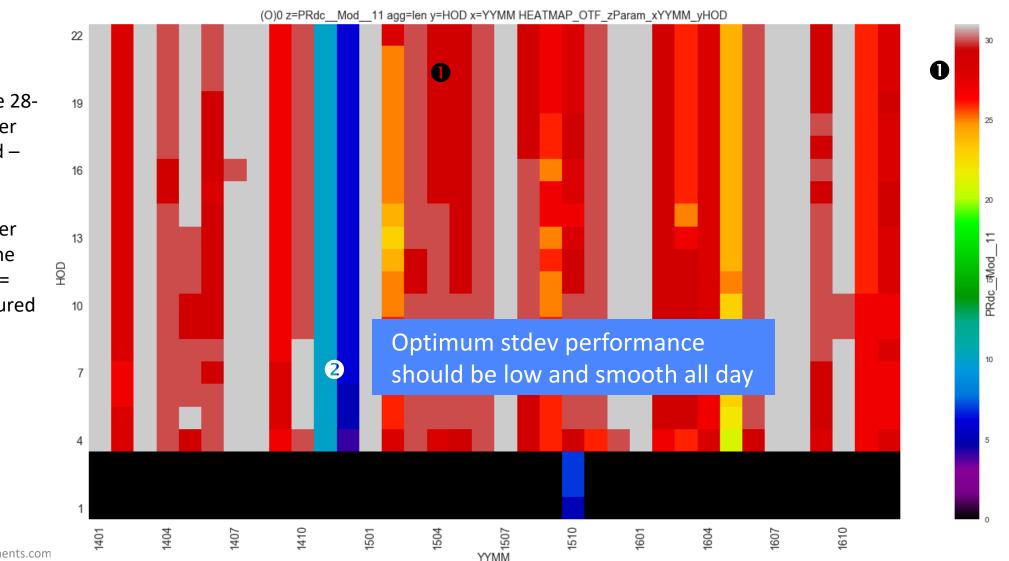
Gantner

instruments

Thank you very much!

j.sutterlueti@gantner-instruments.com

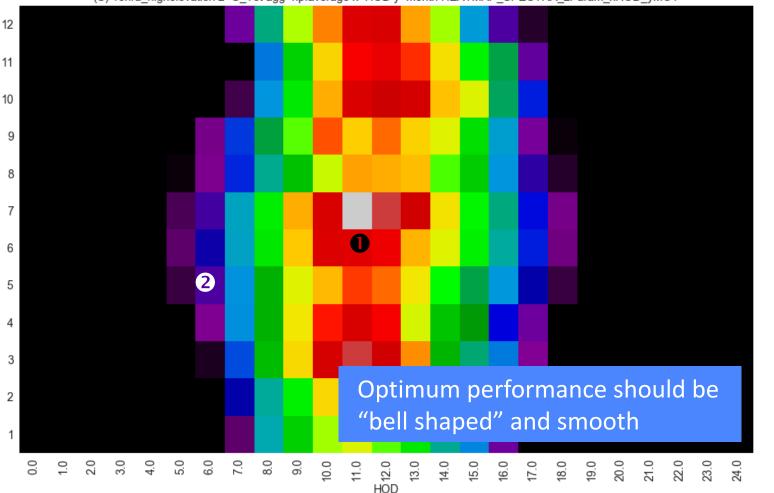
Appendix



Evaluating uptime by counting measurements each hour and month Count of measurements (colours) by HOD A and YearMonth YYMMday →

↑HOD 4:00 to 22:00
 →YYMM 1401-1612

- Full uptime will have 28-31 measurements per calendar month (red – grey)
- Vertical lines of other colours indicate some downtime e.g. blue = only ~10 days measured / month


Determining climate data e.g. average insolation by month and hour Gantner Average Insolation per MonthOfYear 1...12 MOY and HourOfDay 0...24h HOD

Predicted system performance needs to evaluate climate data e.g. G, Tamb, Tmod, WS, RH ...

- Maximum average irradiance here is ~900W/m² 12:00 in month 7 July Summer
- Average irradiance falls in winter (Months 1 and 12) and also morning and evening (e.g. 6:00 and 18:00)

month

Can also check irradiance sensors or good vs. bad weather which affects power output.

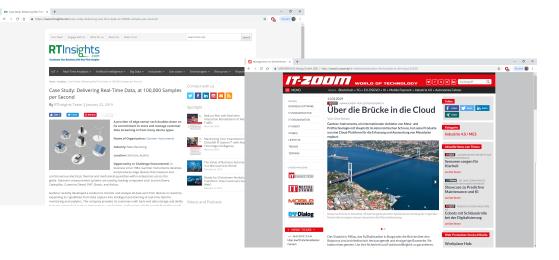
(S) 1enra_highelevation z=G_Tot agg=np.average x=HOD y=month HEATMAP_SPECTRA_zParam_xHOD_yMOY

800

600

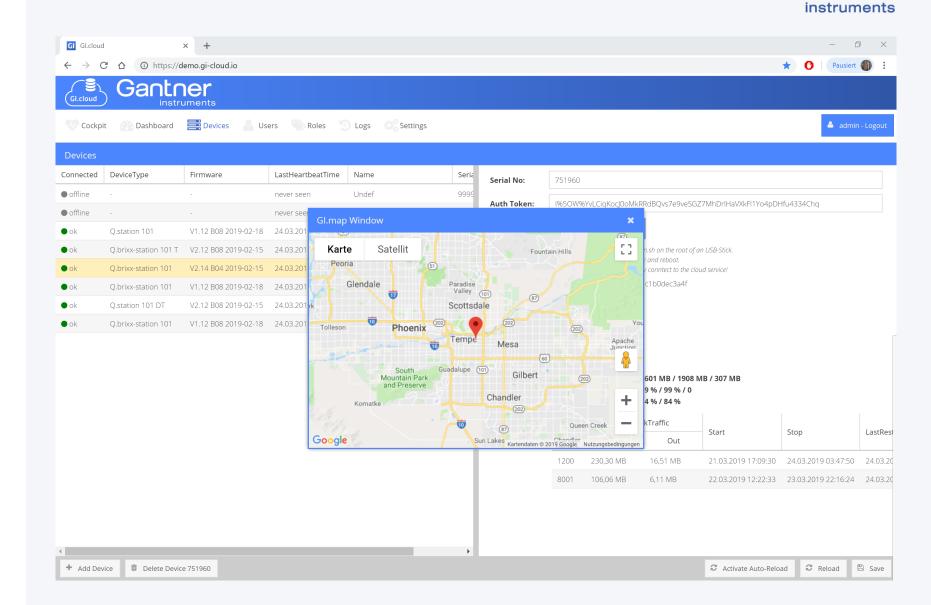
G_Tot

400


200

Futher Information

Gantner


- Ask for demo log in at:
 - gi.cloud@gantner-instruments.com
 - Subject: [Demo Log in GI.cloud]

- gi-cloud.io
- Media Articles
 - Case Study: Delivering Real-Time Data, at 100,000 Samples per Second, in: Real time insight, Big data news platform in Silicon valley
 - "Über die Brücke in die Cloud", Deutscher Mittelstand IT
 - Going open-source to handle IIoT real-time data Link

Device Management

• Devices & Meta data

Gantner

Device Management

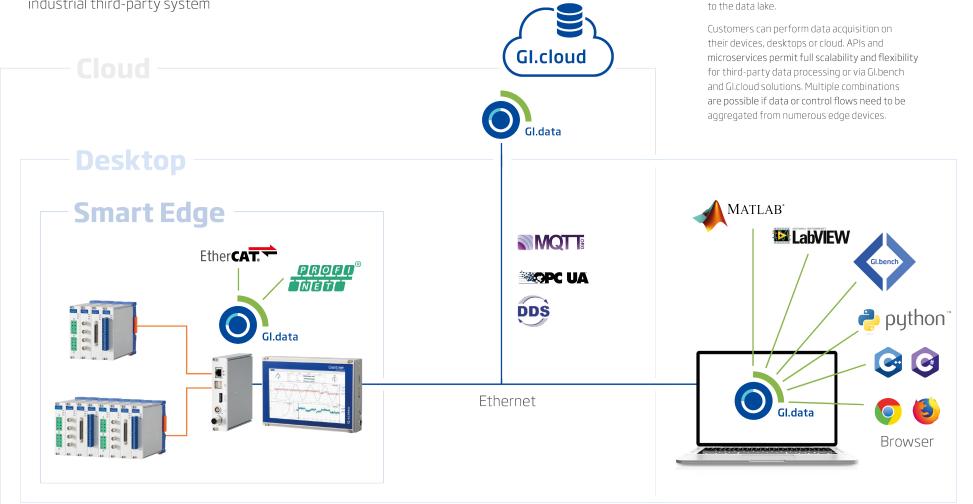
Logs

		//demo.gi-cloud.io)			🕶 ★ 🚺 Pausiert
Gl.cloud		ner truments				
Cockpit	Dashboard	Devices	Users	🔍 Roles 🏾 😨 Logs	ttings	🔺 admin
Logs						
Timestamp	Туре	Sender	Торіс	Message	Args	
22.03.2019 13:47:17	ERROR	QStationSystem	-5075	INTERFACE COMBINED ERROR	-	
22.03.2019 13:47:16	ERROR	NTPClient	-6521	NTP Client: not synchronized		
22.03.2019 12:07:25	ERROR	QStationSystem	-5056	VARIABLE ERROR	-	
22.03.2019 09:38:27	ERROR	QStationSystem	-5056	VARIABLE ERROR	-	
22.03.2019 09:33:59	ERROR	QStationSystem	-5056	VARIABLE ERROR	-	
22.03.2019 09:31:10	ERROR	QStationSystem	-5056	VARIABLE ERROR	-	
22.03.2019 06:45:43	ERROR	QStationSystem	-5075	INTERFACE COMBINED ERROR	-	
22.03.2019 06:45:42	ERROR	NTPClient	-6521	NTP Client: not synchronized	-	
22.03.2019 06:45:36	ERROR	QStationSystem	-5056	VARIABLE ERROR	-	
21.03.2019 17:09:39	INFO	Gl.service	Gl.service	Gl.service init complete		
21.03.2019 17:09:38	INFO	Gl.service	Start Process	Started	Gl.system	
21.03.2019 17:09:32	INFO	Gl.service	Start Process	Started	Gl.data	
21.03.2019 17:09:32	INFO	Gl.service	Start Process	Starting	Gl.system	
21.03.2019 17:09:25	INFO	Gl.service	Start Process	Started	Gl.config	
21.03.2019 17:09:25	INFO	Gl.service	Start Process	Starting	Gl.data	
21.03.2019 17:09:18	INFO	Gl.service	Start Process	Starting	Gl.config	
21.03.2019 17:09:18	INFO	Gl.service	Start Process	Started	Gl.com	
	INFO	Gl.service	Start Process	Starting	Gl.com	
21.03.2019 17:09:11						

Gantner

instruments

Desktop or Cloud


Gl.connectivity fully integrates data storage,

update management from the sensor interface

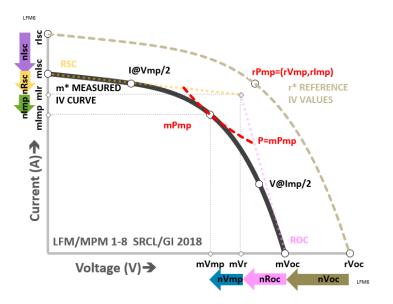
security, configuration, authentication and

Gl.connectivity

Access, store and handle your edge device data with high performance interfaces on GI proprietary platforms or any industrial third-party system

Edge Computing Enablers & requirements

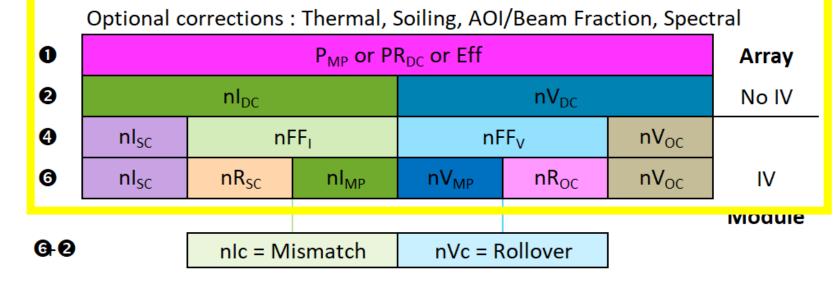
- Information and communications technology (ICT)
- Automation technology
- Signal processing
- Control systems
- Data processing & analysis


Requirements:

- Platforms: Distributed, Scalable, resilience, ...
- Handle fast data, big data
- Open interfaces; Simple & Flexible

New Business and investment models are emerging closer to the customer.

The LFM : Defining loss parameters 1,2,4 (and 6 for full IV curve)



The LFM PR_{DC} definitions for 2, 4 and 6 parameters respectively are given in equations below (where $PR_{DC}x$ means the equation is for x parameters).

$$\begin{array}{l} PR_{DC2} = [& nI_{DC} &] \times [& nV_{DC} &] @ \\ PR_{DC4} = [nI_{SC} \times & nFF_{I} &] \times [& nFF_{V} & \times nV_{OC}] @ \\ PR_{DC6} = [nI_{SC} \times nR_{SC} \times nI_{MP}] \times [nV_{MP} \times nR_{OC} \times nV_{OC}] @ \\ \end{array}$$

Figure 3 illustrates visually how these values all multiply to give the usual PR_{DC} .

(Note the 6+2 version has two extra parameters to quantify the curvature from cell mismatch or rollover.)

