Angular Response Correction Factors

 for Comparing PV Reference Cells and Thermopile PyranometersMichael Gostein, Atonometrics, Austin, TX ATO NOMETRICS

Introduction

- PV reference cells and thermopile pyranometers have different spectral and angular responsivities
- PV performance analysts may be confused when comparing data from reference cells to pyranometers - Discrepancies are often attributed to spectral effects while angular effects are under-appreciated
- In this work we calculate estimated angular response correction factors for comparing reference cells and pyranometers in exemplary systems

Simulation Method

- Calculations are performed using Sandia's PVLIB in MATLAB
- We use Typical Meteorological Year (TMY) data for 3 sites from the National Solar Radiation Databas (NSRDB)
- The calculation is performed for three different geometries: fixed optimal* tilt, single-axis tracking, and horizontal (GHI sensor orientation)
- Optimal* tilt taken as $0.8 \times$ latitude (simplification)
- For each data set and geometry, we use DNI, DHI, and albedo from the TMY data to calculate POA
-The calculation uses the Perez model for diffuse irradiance translation and the isotropic model for ground-reflected light
- For the pyranometer: POA sensor response is calculated assuming ideal cosine response (incidence angle modifier (IAM) =1)
- For the reference cell: POA sensor response is calculated using an ideal IAM from the Martin-Ruiz model, including weighted-average IAM values for diffuse and ground-reflected light

$$
\begin{aligned}
& \text { POA }= \text { DNI } \cdot \cos (a o i) \cdot I A M(a o i) \\
&+f_{\text {Perez }}(D N I, D H I) \cdot I A M_{d i f f} \\
&+G H I \cdot \alpha \cdot\left(\frac{1-\cos \beta}{2}\right) \cdot I A M_{\text {ground }}
\end{aligned}
$$

Incidence Angle Modifier (IAM

AOI (degrees)

Correction Factor

$$
C F=\sum P O A_{\text {pyranometer }} / \sum P O A_{\text {refcell }}
$$

Multiply reference cell POA by CF to get estimate for pyranometer POA

Diffuse Fraction

$$
k_{d}=D N I / G H I
$$

Acknowledgements

- This material is based upon work supported by the U.S. Department of Energy's Solar Energy Technologies Office under Award Number DESC0020831

Discussion

- Assume reference cell and pyranometer calibrated identically at normal incidence
- Considering only angular response, the reference cel will measure lower irradiance than the pyranometer
- This is not a spectral effect
- In winter months at high latitudes differences can reach 2-4\% for single-axis tracking
- Differences correlate with weighted-average AOI
- High diffuse fraction also increases the discrepancy, because IAM diffuse averages over high AOI
- Reference cell angular response is similar to modules, while pyranometer angular response is flat
- The correction factors presented here can be used as a first estimate to explain observed behavior

