

Approaches to Sky Image Based Single Axis Tracker Algorithms

PRESENTED BY Ben Pierce, Gavin DeBrun, Keval Suhas Anekar, Daniel Riley

Sandia National Laboratories is a multimission

Janua Natunat Japon Andream Carlo and Carlo an

Single axis tracking in varied weather conditions

- Most SAT algorithms (such as pvlib's) only follow the Sun
- *This is optimal when there are **no clouds**
- Cloud covering the Sun = less direct, more diffuse
 - When it's very cloudy, move trackers towards the horizonal to maximize diffuse

Figure: Copernicus Atmosphere Monitoring Service

SAND2022-11281 C

Relationship between angles, irradiance, and weather

- Orange line: Normalized angle of max irradiance
- *Red line: Normalized irradiance at max angle

Spiky" signal- angle of max irradiance would not be a good tracking strategy

Short-term effects **often not modeled** due to coarser aggregations, but are impactful

Data collection and sensors

- Sky images collected in real time
- Validation data is collected with a Multi Planar Irradiance Sensor (MPIS)
 - Irrad. sensor rotating on same axis as tracker
- Physical MiniSATs as testbench

Sample MPIS Irradiance Profiles

ħ

Multiple possible approaches

- * We plan to implement and test three different types of algorithms
 - Cloud coverage heuristic
 - Past-*n* regression
 - Deep Reinforcement Learning
- * Each approach uses a neural network of some type to do:
 - Cloud segmentation
 - Prediction of angle of *maximal irradiance*
 - Prediction of optimal *movement strategy*
- * Each has different drawbacks, such as
 - Manual input & bias for movement strategy
 - Reliant on accurate angle predictions
 - Difficult to train & generalize

These two are also less explainable due to lack of explicit decision tree

Cloud Coverage Heuristic

* Concept:

- If extended cloud cover: Move towards the horizontal by some amount
- Else, follow the Sun
- Further conditions based on system knowledge
- * Many methods of calculating cloud coverage in literature
 - Your sky camera probably has one already
 - ✤ I presented a neural network based model at PVSC -
- ✤ Has additional parameters:
 - ***** % **coverage** to be considered cloudy
 - * Number of previous timesteps to consider
- Simulations find this algorithm to be a ~0.06-0.08% gain in ABQ, NM
 - ✤ Grid search over parameter space yields highly reactive tracker
- ✤ <u>Advantages:</u> Simple, configurable
- Disadvantages: Site specific heuristics/parameters

CAE prediction

Past-*n* regression for tracker motion

- Use past *n* minutes of angles of maximal irradiance
- Move by **some threshold** *r* in direction of slope
- Update tracker every k minutes
- <u>Advantages</u>: explainable, adjustable
- <u>Disadvantages</u>: requires specialized device (eg MPIS) to find angle of max irradiance
 - Prototype sensor for wide deployment .
 - Convolutional neural network (CNN)

Algorithm can be adjusted by changing *n*, *r*, *k* to desired specificity

Deep Q Learning for tracker motion

- Use Deep Q Learning, a type of reinforcement learning (RL) to predict **optimal movement strategy**
- Agent receives **rewards** (eg irradiance received) and **learns** based on expected future reward.
 - "What move will result in the maximal power received at the end of the day?"
- Approximate decision lookup table (function) with ANN
- <u>Advantages</u>: data-driven, adaptable
- <u>Disadvantages</u>: "black box", computationally intensive to train

(fb)

Current Results & Next Steps

Problem: ABQ, NM is too good for PV!

- Extended periods of cloudiness are rare for much of the year
- *High overall irradiance dominated by direct component

So, models behave "unrealistically" in most cases

- Cloud coverage is too reactive (teleportation)
- Past-n regression oscillates
- RL doesn't move at all (risk vs reward!)

Other conditions must be considered

- Snow shedding
- *Wind
- *Terrain

Next step: Install MPIS & Sky Camera at Michigan Tech RTU

Anderson & Aneja PVSC 2022

Questions?

<u>Contact</u>

Ben Pierce, Sandia National Labs <u>bgpierc@sandia.gov</u>

