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| Single axis tracking in varied weather conditions

“*Most SAT algorithms (such as pvlib’s) only

follow the Sun

“*This is optimal when thete are no clouds

*Cloud covering the Sun = less direct, more

diffuse

“*When it’s very cloudy, move trackers towards
the horizonal to maximize diffuse
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https://atmosphere.copernicus.eu/sites/default/files/2021-05/CAMS72_2018SC1_D72.4.3.1_2021_UserGuide_v1.pdf

Relationship between angles, irradiance, and weather

**Orange line:

**Red line: Normalized irradiance

“*“Spiky” signal- angle of max irradiance
would not be a good tracking strategy

“»*Short-term effects often not modeled due to
coarser aggregations, but are impactful
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| Data collection and sensors

**Sky images collected in real time

*»*Validation data is collected with a Multi
Planar Irradiance Sensor (MPIS)

“*Irrad. sensor rotating on same axis as
tracker

“*Physical MiniSATSs as testbench

Sample MPIS Irradiance Profiles
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Multiple possible approaches

% We plan to implement and test three different types of algorithms

% Cloud coverage heuristic
% Past-z regression

% Deep Reinforcement Learning

* Fach approach uses a neural network of some type to do:

% Cloud segmentation
+* Prediction of angle of maximal irradiance
0:0

Prediction of optimal movement strategy

¢ FEach has different drawbacks, such as
% Manual input & bias for movement strategy
% Reliant on accurate angle predictions

R/

** Difficult to train & generalize

These are

different, due to
tracker movement

costs, wear and
tears, etc

These two are also less explainable due to lack of
explicit decision tree
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Cloud Coverage Heuristic

Concept:
% If extended cloud cover: Move towards the horizontal by some amount
¢ FElse, follow the Sun

% Further conditions based on system knowledge

Many methods of calculating cloud coverage in literature

% Your sky camera probably has one already

/7

** I presented a neural network based model at PVSC
Has additional parameters: \
% % coverage to be considered cloudy

% Number of previous timesteps to consider

Simulations find this algorithm to be a ~0.06-0.08% gain in ABQ, NM

% Grid search over parameter space yields highly reactive tracker

Advantages: Simple, configurable

Disadvantages: Site specific heuristics/parameters
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Past-n regression for tracker motion

Use past » minutes of angles of maximal irradiance
Move by some threshold 7 in direction of slope
Update tracker every k& minutes

Advantages: explainable, adjustable

Disadvantages: requires specialized device (eg MPIS) to
tind angle of max irradiance
* Prototype sensor for wide deployment

¢ Convolutional neural network (CNN)
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Deep Q Learning for tracker moti~~

Use Deep Q Learning, a type of
reinforcement learning (RL) to
predict optimal movement strategy

Agent receives rewards (eg irradiance
received) and learns based on
expected future reward.

*  “What move will result in the maximal
power received at the end of the day?”

Approximate decision lookup table
(function) with ANN

Advantages: data-driven, adaptable

Disadvantages: “black box”,
computationally intensive to train
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Current Results & Next Steps

“*Problem: ABQ, NM is too good for PV!

“*Extended periods of cloudiness are rare for much of the
year

“*High overall irradiance dominated by direct component

“*So, models behave “unrealistically” in most cases
“*Cloud coverage is too reactive (teleportation)

“*Past-z regression oscillates

% RI, doesn’t move at all (risk vs reward!) e ——, —

0.0 0.2 0.4 0.6 0.8
“*Other conditions must be considered Insolation Gain [%] i
“*Snow shedding Anderson & Aneja PVSC 2022 ‘
“»Wind
“»Terrain

“*Next step: Install MPIS & Sky Camera at Michigan
Tech RTU
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Questions?

Contact

Ben Pierce, Sandia
National Labs
bgpierc@sandia.gov
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