

Annalise Miller August 2022 PVPMC Workshop

Automating the Solar Resource and Production Assessment

Level of confidentiality: PUBLIC

Intro

Automating solar production analyses

- What are we doing: cutting out some busy work
- Why are we doing it: to get more information, earlier in the process
- How are we doing it: python and python accessible software packages
- Other applications: pipeline assessments, research & methodology updates, and more!

Level of confidentiality: PUBLIC

Background

Key definitions

- ※ API (Application Programming Interface)
- SDK (Software Development Kit)
 - ways to interact with a tool through a programming language (python!)

Why do I care?

- Button pushing is a waste of *everyone's* time
 - Meteorologist
 - ※ Developer
 - Engineering
 - Capitol Estimating
 - Investment Office

avangridrenewables.us

Level of confidentiality: PUBLIC

Use Cases

Automated solar resource and energy assessment

- Get more information, earlier in the design process, to make more informed decisions
 - * Site selection
 - * Financing approval to continue project development
 - Design optimization, sensitivity, and risk

Use Cases

How we currently make these decisions:

- Resource comparison
 - ※ Fast
 - No technology assumptions required
 - * Available open-source options
 - Tools exist (e.g. Solar Resource Compass)
 - It's a proxy for production. A good proxy, but still a proxy

Production comparison

- # Higher fidelity
- Must make technology assumptions
- It's more time intensive, so you are limited in the number of options you can explore

avangridrenewables.us

Level of confidentiality: PUBLIC

The Process

The Process

The Process

AVANGRID RENEWABLES avangridrenewables.us Level of confidentiality: PUBLIC Automating the Solar Resource and Production Assessment 8

Time Saving

Automated solar resource and energy assessment

Get more information, earlier in the design process, to make more informed decisions

Manual Assessments

- Solar Resource Assessment (3 hrs)
- Loss calculations (2 hrs)
- Optimization (1-2 hrs)
- Final modeling and processing (1 hr)

Automated assessments

- \leftarrow (minutes)
- \leftarrow (seconds)
- \leftarrow (minutes)
- \leftarrow (seconds)

* Resource comparison

Detailed production comparison

avangridrenewables.us

Level of confidentiality: PUBLIC

Conclusions and continuances

Solar developers:

- * You do not need a computer science degree to automate your processes
- * Automation \rightarrow more information earlier in the process \rightarrow more informed decision making
- Blind automation \rightarrow bad data
- * There are other useful applications for automated solar assessments
 - Pipeline analysis
 - * Combination with financial modeling
 - Methodology studies and modeling research

Software, data, and tool providers:

Most of you already provide programmatic access to the products you sell, and I really appreciate that

avangridrenewables.us

Level of confidentiality: PUBLIC

Thank you!

Special Acknowledgements:

Questions? annalise.miller@avangrid.com

Emily Greeno

Peter Hall

Allison Mueller

avangridrenewables.us

Level of confidentiality: PUBLIC