Sandia National Laboratories Bifacial Performance Optimization Studies using Bifacial Radiance and High Performance Computing

Joshua S. Stein¹, Matthew Prilliman¹, Cameron Stark¹, John Nagyvary², Silvana Ayala Pelaez³, and Chris Deline³ ¹Sandia National Laboratories, ²Array Technologies, ³National Renewable Energy Laboratory

Problem Statement

- What is the best system design for bifacial PV on Single axis trackers?
- Bifacial performance is more sensitive to certain parameters not considered that important for monofacial PV performance:
 - Albedo
 - Hub height
 - Tube gap, etc...

Models

- **<u>BIFACIAL</u>** RADIANCE: NREL Python wrapper predicts incident irradiance using Radiance ray-tracing tools
 - Hourly cell-level incident irradiance calculations for bifacial arrays

Approach									
 Model inputs: Standard 60-cell module 	Inputs	Description	Туре	Range	Units				
 1. GCR = Collector width/Pitch 1. GCR = Collector width/Pitch 25 modules per row 	GCR	Collector width/row- to-row distance	Float	.38	meters/met ers				
collector width • 5 rows	I Albedo	Ratio of light reflected by ground	Float	1. [.1080] 2-3. [.1525] 4. [.7585]	None				
3. Hub height Pitch	Hub neight	ground		1-2	meters				
4. Albedo	Tube gap		Float	1-10	centimeters				
5. Tube shape: [Round, Octagonal, Square, Hexagonal]	Kacktrack	True= backtracking False="true" tracking	Boolea n	True, False	none				
6. Tube gap: Distance between torque tube and back of module	Tube shape	Shape of torque tube	String	Round, Oct, Square, Hex	none				

- Fixed tilt and horizontal single-axis tracker systems available
- Solar position calculations from pvlib-python

- **DAKOTA:** Sandia developed optimization software
 - Automatic parameter sampling (Latin Hypercube Sampling) for robust sensitivity, optimization studies
 - Parallel processing suited for multi-core HPC environment

Results

• Results of albedo range .15-.25 study show that GCR and albedo have the most influence on the variability of both the front and rear irradiance received, particularly in the center row where row-to-row shading due to GCR has greater effect.

- **Stepwise Regression** results show that the insolation variability for edge modules is most explained by albedo when values are low, while the center modules behavior is dominated by changes in GCR.
- Comparison of the Annual and 36-day results shows that nearly identical dependencies, validates the use of 36-day representative samples for future studies.

Code (user's simulation)

HPC cluster: 71 Teraflop peak cluster with 168 dual socket, 8-core 2.7 GHz Intel Sandy Bridge processors with 64 GB of RAM per node.

Approach

- Latin Hypercube Sampling (LHS): Random sampling from uniform probability bins with reordering to minimize cross correlation
- 100 realizations: annual simulations for 3 HSAT test cases:
 - 1. 36-day annual sample with wide albedo range
 - 2. 36-day annual sample with albedo range .15-.25 (typical ground conditions)
 - 3. 365-day annual approximation with .15-.25 albedo range
 - 4. 36-day annual sample with albedo range .75-.85 (snow conditions)
- 36 day annual samples include max, min, median daily insolation for each month
- Outputs analyzed with Stepwise Regression where variables are sequentially added to regression until ~95% of the variability is accounted for.
- Model outputs:

Albedo Range .75-.85

Albedo Range .75-.85

 Bifacial_radiance allows for cell-level irradiance scans; these scans show that the torque tube can limit the irradiance received in the center cells of a module

 $Dev = 13.3 W/m^2$

117

Summer: Std Dev = 24.9 W/m ²									Winter: Std			
-	397	398	397	395	402	402		123	123	1		
	379	378	377	373	372	372		115	115	1		
	360	359	361	361	359	359		110	109	1		
	353	354	347	347	354	354		102	102	1		
	347	347	346	347	345	344		98	98	9		
	348	348	346	347	352	352		94	94	9		
	359	359	361	361	356	356		88	88	{		
	376	375	371	371	376	376		87	87	1		
	395	395	396	396	395	398		85	85	\$		

Albedo Range .15-.25

Summer: Std Dev = 5.5 W/m^2							Wint	er: S	td De	v = 1	.7 W	/m²
84	85	85	85	84	84		34	34	34	34	34	34
81	81	81	80	80	80		33	33	33	33	33	33
- 77	77	77	77	77	77		31	31	31	31	31	32
74	74	75	75	75	75		31	31	31	31	30	30
73	73	74	74	72	72		30	30	30	30	30	30
73	73	73	73	73	73		30	30	30	29	29	29
76	76	77	77	77	77		29	29	29	29	29	29
79	79	80	80	79	79		29	29	29	29	29	29
85	84	84	84	85	86		29	29	29	29	29	30

Albedo Range .15-.25 (36 days)

• Irradiance on front and back of each cell

424 424 424 426 426 426 85 85 85 83 83 83 83 91 91 90 90 90 90 90 30 30 30 30 30 30 30 30

Higher albedo results in a larger Stdev, meaning that these conditions could result in more electrical mismatch.

Findings

- Albedo and GCR are the most influential parameters
 - Finding high albedo sites or enhancing albedo may be justified.
- Hub height and backtracking are of secondary importance.
- Tube gap and tube shape appear to not be very influential parameters.

Acknowledgements

- Bifacial_Radiance developed at NREL:
 - (https://github.com/NREL/bifacial_radiance)
- Dakota developed at Sandia National Laboratories:
 - (https://dakota.sandia.gov)

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract

DE-NA0003525. SAND No. _____ SAND2019-9944 C

