BUILDING A WORLD OF DIFFERENCE

BLACK & VEATCH PAN FILE CREATION SERVICE

MONALI JOSHI EVAN RILEY PRESENTED AT THE 2013 SANDIA PV PERFORMANCE MODELING WORKSHOP SANTA CLARA, CA. MAY 1-2, 2013 PUBLISHED BY SANDIA NATIONAL LABORATORIES WITH THE PERMISSION OF THE AUTHOR

AGENDA

- 1) Introduction: B&V PAN File Creation Service
- 2) Module Performance Characterization

Data Validation

Data Normalization

3) PAN File Optimization

Base Case

Curve-Fitting

Evaluation

- 4) Impact on Energy Production Estimates
- 5) Challenges/Limitations

INTRODUCTION

PAN files created using PVsyst default values often result in misrepresentation of expected module performance

Industry needs 3rd party development/validation to help ensure performance modeled within PVsyst represents expected performance

B&V launched custom PAN file creation service with the goal of more accurately representing measured module performance within PVsyst

Two step process:

- 1) Module Performance Characterization
- 2) PAN file parametric optimization to match measurements

Developers and Financiers need custom PAN files from independent 3rd parties for energy forecasts that don't leave any kWh on the table

MODULE PERFORMANCE CHARACTERIZATION—PERFORMANCE CURVES

Characterize photovoltaic (PV) module electrical performance as a function of irradiance and temperature

According to IEC 61853: PV Module Performance Testing and Energy Rating

IRRADIANCE	Module temperature			
W⋅m ⁻²	15 °C	25 °C	50 °C	75 °C
1 100	NA			
1 000				
800				
600				
400				NA
200			NA	NA
100			NA	NA

- 5 samples
- Exposed to outdoor light soak until power output stabilized
- 22 temperature/irradiance conditions
- Indoor measurements, AM 1.5

Process begins with indoor IV-curve measurement of stabilized modules

Measured IV curve data is used to generate normalized efficiency/power output coefficients for each sample

Pmp/Efficiency most relevant, controllable parameter within PVsyst (discussed later)

Sample 1: Normalized Efficiency							
	15 25 50 75						
1100	0.000	0.994	0.892	0.783			
1000	1.042	1.000	0.896	0.789			
800	1.049	1.006	0.904	0.795			
600	1.052	1.011	0.908	0.799			
400	1.050	1.005	0.900	0.000			
200	1.018	0.975	0.000	0.000			
100	0.977	0.930	0.000	0.000			

Sample 2: Normalized Efficiency							
	15 25 50 75						
1100	0.000	0.994	0.891	0.788			
1000	1.041	1.000	0.896	0.793			
800	1.049	1.008	0.904	0.801			
600	1.056	1.013	0.909	0.805			
400	1.053	1.011	0.904	0.000			
200	1.025	0.981	0.000	0.000			
100	0.986	0.938	0.000	0.000			

Sample 3: Normalized Efficiency							
15 25 50 75							
1100	0.000	0.997	0.891	0.784			
1000	1.041	1.000	0.896	0.790			
800	1.050	1.008	0.904	0.797			
600	1.055	1.011	0.910	0.801			
400	1.051	1.006	0.904	0.000			
200	1.018	0.976	0.000	0.000			
100	0.977	0.932	0.000	0.000			

Sample 4: Normalized Efficiency						
	15	25	50	75		
1100	0.000	0.996	0.895	0.792		
1000	1.044	1.000	0.900	0.796		
800	1.051	1.008	0.905	0.804		
600	1.055	1.011	0.909	0.806		
400	1.051	1.004	0.904	0.000		
200	1.021	0.977	0.000	0.000		
100	0.982	0.933	0.000	0.000		

Sample 5: Normalized Efficiency							
	15 25 50 75						
1100	0.000	0.996	0.892	0.790			
1000	1.041	1.000	0.896	0.795			
800	1.047	1.006	0.903	0.801			
600	1.050	1.010	0.907	0.804			
400	1.047	1.006	0.899	0.000			
200	1.017	0.976	0.000	0.000			
100	0.977	0.934	0.000	0.000			

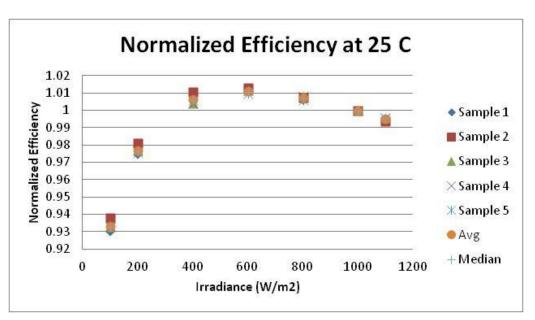
Measured performance is represented as coefficients with respect to nominal (STC) rating

Data validation steps:

Isc linearity

$$\widehat{I_{sc}}(G) = \left(\frac{G_0}{G}\right) \cdot \frac{I_{sc}(G)}{I_{sc}(G_0)} \quad , \qquad G_0 = 1000 \left[\frac{W}{m^2}\right]$$

Measure of flash test equipment accuracy at low light levels


Data quality checks implemented for measurement accuracy and sample outliers

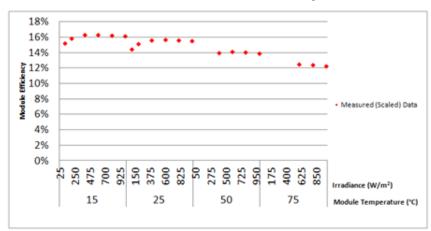
Data validation steps:

Isc linearity

Sample uniformity

Variation for all samples at all temperatures and irradiance conditions falls within the measurement tolerance of flash tester

Data quality checks implemented for measurement accuracy and sample outliers


Data validation steps:

Isc linearity

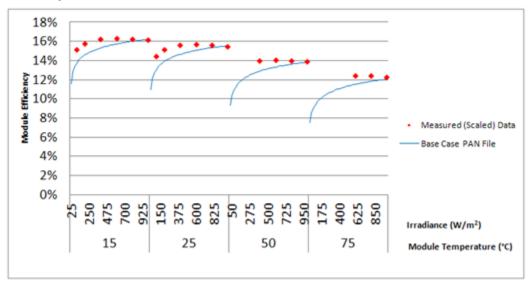
Sample uniformity

Coefficients are averaged and used to produce "Expected IEC 61853 Pmp" dataset for a module with nominal output

EXPECTED POWER OUTPUT BASED ON NAMEPLATE						
	15 25 50 75					
1100		328.44	294.42	259.89		
1000	312.51	300.00	269.01	237.73		
800	251.82	241.74	217.00	191.96		
600	189.65	182.00	163.52	144.53		
400	126.03	120.76	108.24			
200	61.18	58.62				
100	29.40	28.00				

Average expected Pmp/Efficiency curves are used as the target efficiency curves for PAN file optimization

PAN FILE OPTIMIZATION – BASE CASE


Utilize Datasheet IV curve characteristics at STC

Model Base Case PAN file using PVsyst default values

Shunt Resistance (Rsh) Shunt Resistance at $G_{inc} = 0^*$ (Rsh, G = 0)

Series Resistance (Rs) Exponential Parameter* (Exp)

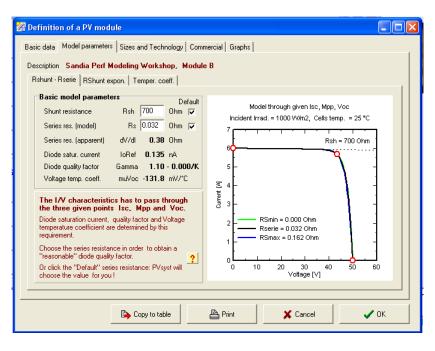
*Describes exponential behavior of Rsh as a function of incident irradiance

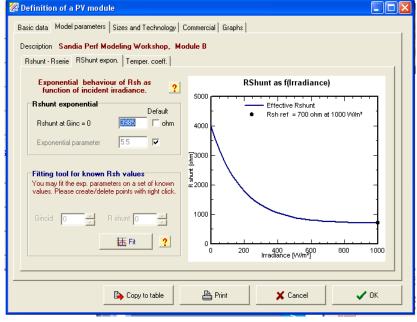
Datasheet electrical parameters + PVsyst defaults are starting point of optimization analysis

PAN FILE OPTIMIZATION – CURVE-FITTING

Algorithmically vary PAN file parameters until residuals minimized Systematic order of operations based on sensitivity analysis Weighted toward typical operational temperature, 50 °C curves (secondary consideration)

Parametric optimization to minimize residuals with respect to measured efficiency curves




IMPACT ON ENERGY PRODUCTION ESTIMATES

- ➤ Default PAN files typically underestimate performance in low- and intermediate-light conditions
- ➢ Optimized PAN Files result in 0.1-0.3% RSS (Default PAN file RSS: 2-4%)
- Estimated impact to production estimates: 2-5% gain in energy vs using default PAN files, depending on location

Module resistances are selected to best fit measured data

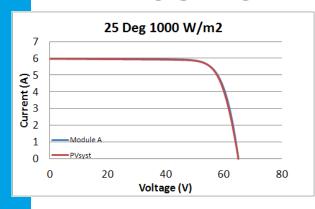
Parameters do not represent the typical physical meaning

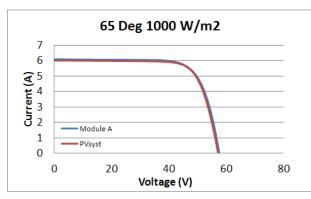
Module resistances are treated as non-physical curve-fitting parameters

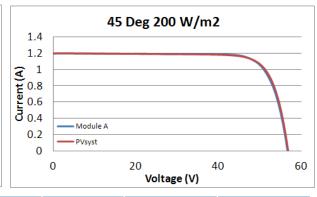
Singl-diode model has interdependencies, thus optimized PAN file values are non-physical

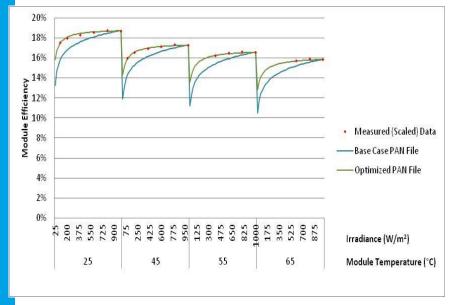
- > Temperature coefficient of Voc is tied to selected Rs value
 - → not always possible to match manufacturer's specification
 - → Impacts calculation of IV curves at non-STC conditions

PVsyst calculates 3 points from each non-STC IV curve [(0, Isc), (Vmp, Imp), and (Voc, 0)] using input resistance values


While the temperature coefficient Isc specified, the temperature coefficient of Voc is product of the model


However we can force the model to match the measured product of Imp*Vmp

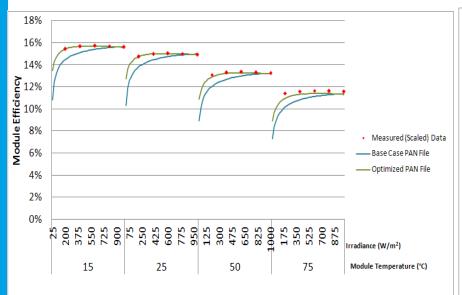

Due to interdependencies, B&V optimizes with respect to measured efficiencies

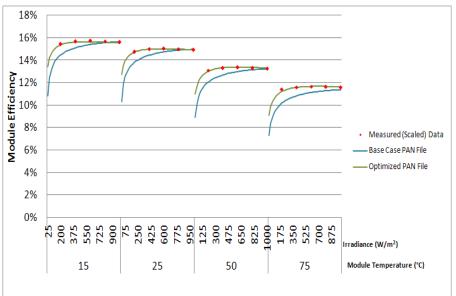


RESULTS FROM MODULE A ANALYSIS

lemperature (°C)	(W/m2)	Error in Isc	Error in Voc	Error in Pmp
25	1000	0.003%	0.015%	0.029%
	600	0.025%	-0.233%	-0.250%
	200	-0.267%	-0.261%	-0.320%
45	1000	0.854%	0.155%	0.115%
	600	0.255%	0.094%	-0.140%
	200	-0.035%	-0.115%	0.104%
65	1000	1.279%	0.656%	0.365%
	600	0.750%	0.602%	0.439%

Single-diode model has interdependencies, thus optimized PAN file values are non-physical

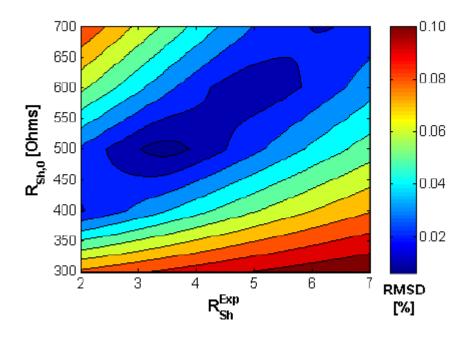

- ➤ Temperature coefficient of Pmp is treated as a fitting parameter
 - → coupled with ideality factor, gamma
 - → Impacts calculation of IV curves at non-STC conditions



Example:

μPmp = -0.451%								
Irradiance		Temperature (degC)						
(W/m2)	1	1 15 25 50 75						
1000		303.08	290.00	257.30	224.61			
800		243.92	233.40	207.08	180.77			
600		183.36	175.45	155.67	135.89			
400		121.70	116.45	103.32	90.19			
200		59.94	57.35	50.89	44.42			

Synthetic dataset was created using measured Pmp data at 25°C which was extrapolated to other temperatures using datasheet temperature coefficient of Pmp


Fit using datasheet Pmp temp. coeff: μPmp = -0.451% RSS = 0.74%

Fit using optimized Pmp temp. coeff: µPmp = -0.419% RSS =0.29%

Temperature coefficient of Pmp behaves as a non-physical fitting parameter

Non-unique solution to single-diode model

K. Sauer, T. Roessler, "Systematic Approaches to Ensure Correct Representation of Measured Multi-Irradiance Module Performance in PV System Energy Production Forecasting, Software Programs", 38th IEEE Photovoltaic Specialists Conference (PVSC), 2012

SUMMARY/ FUTURE WORK

- ▶ B&V PAN file creation service provides PAN files more closely matched to measured module behavior
- Represent expected efficiency curves of nameplate-rated modules operating in a stabilized condition
- ➤ PAN file parametric optimization performed to minimize residuals between modeled and measured data
 - PAN file parameters are treated as non-physical
 - Fit is weighted toward typical operational temperature
- 2-5% gain in forecasted energy expected, compared to default PAN files
- Future work: PVsyst 6 evaluation, IAM modifier, LID characterization

THANK YOU

Building a world of difference. Together

www.bv.com