

Bridging scientific research and industry

Research progress on industrial crystalline silicon solar cells at SJTU

Wenzhong Shen (沈文忠)

Institute of Solar Energy Shanghai Jiao Tong University

E-mail: wzshen@sjtu.edu.cn, Tel: +86-21-54747552

For PV application, who can compete with silicon?

- Cell efficiency > 20%
- Module cost < \$0.4/Wp</p>
- System stability > 25 years

Crystalline silicon solar cells have been the mainstream of PV market during the past decade (over 85-90%, 93.7% in 2016), and will continue to be next ten or even more years!

Outline **Industrial Eff. Diamond wire sawn p-type mc-Si solar cells** (1)19.0-20.5% **p-type PERC** (passivated emitter and rear contact) solar cells 21.0-22.5% (2) 20.5-22.5% (f) **n-type PERT** (passivated emitter, rear totally-diffused) bifacial (3) c-Si solar cells 18.5-20.5% (r) **n-type BJBC** (back-junction back-contact) solar cells (4) 22.5-24.5% a-Si/(n-type)c-Si heterojunction solar cells 22.5-24.5% (5) >20.0% **Ultrathin c-Si solar cells** (6) >30.0% **Perovskite/c-Si tandem solar cells** (7)

① Diamond wire sawn p-type mc-Si cells

→ Module cost \$0.3/Wp

Effective texturization:

- Reactive ion etching (RIE) mature and high cost
- Metal-assisted chemical etching (MACE) simple, cost-effective and compatible with

current production lines

Solar Energy Materials & Solar Cells 143 (2015) 302-310

Contents lists available at ScienceDirect

Solar Energy Materials & Solar Cells

journal homepage: www.elsevier.com/locate/solmat

One-step-MACE nano/microstructures for high-efficient large-size multicrystalline Si solar cells

Z.G. Huang^{a,b}, X.X. Lin^a, Y. Zeng^a, S.H. Zhong^a, X.M. Song^b, C. Liu^c, X. Yuan^c, W.Z. Shen^{a,*}

www.MaterialsViews.com

High-Efficiency Nanostructured Silicon Solar Cells on a Large Scale Realized Through the Suppression of Recombination Channels

Recombination channels: A. surface recombination

Advanced Materials 27, 555-561 (2015)

B. emitter bulk recombination

PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS Prog. Photovolt: Res. Appl. 2015; 23:964–972

Published online 9 May 2014 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/pip.2506

An effective way to simultaneous realization of excellent optical and electrical performance in largescale Si nano/microstructures

Zengguang Huang^{1,2}, Sihua Zhong¹, Xia Hua¹, Xingxing Lin¹, Xiangyang Kong³, Ning Dai⁴ and Wenzhong Shen^{1*}

(c) Silicon nano/microstructure after depositing Al₂O₃ by ALD.
Inset c1 is a larger image of nanowires with conformal thin film of Al₂O₃;
Inset c2 is the energy dispersive X-ray spectroscopy (EDX) of the top part shown in inset c1.

(a) Schematic diagram of the process.

(b) As-prepared silicon nano/micro-structure. Inset is a larger image of nanowires on a facet of pyramid structure.

碱修饰工艺倒金字塔制绒工艺金刚线切割多晶电池效率: +0.5% → +1.3% (PERC)

Contents lists available at ScienceDirect

Solar Energy Materials & Solar Cells

journal homepage: www.elsevier.com/locate/solmat

Versatile strategies for improving the performance of diamond wire sawn mc-Si solar cells

Y.F. Zhuang^a, S.H. Zhong^a, Z.G. Huang^{a,b}, W.Z. Shen^{a,c,*}

^a Institute of Solar Energy, and Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China

^b School of Science, Huaihai Institute of Technology, Lianyungang 222005, Jiangsu Province, People's Republic of China

^c Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, People's Republic of China

Solar Energy Materials and Solar Cells

霐

(b)

(a)

Group	Uoc/V	lsc/A	Rs/Ohm	Rsh/Ohm	FF/%	NCell	lrev2 @-12V	Quantity
REF	0.640	9.273	0.0019	123.3	80.12	0.1983	0.177	4000
PERC	0.655	9.591	0.0019	202.5	80.07	0.2059	0.102	4000

mass production in 2016

Improvement: Polish

20.0%-efficient Si nano/microstructures based solar cells with excellent broadband spectral response

Adv. Funct. Mater. 26, 1892-1898 (2016)

Solar Energy Materials & Solar Cells 117 (2013) 483-488

Contents lists available at ScienceDirect

Solar Energy Materials & Solar Cells

journal homepage: www.elsevier.com/locate/solmat

Solar Energy Materials and Solar Cells

霐

Sihua Zhong ^a, Wenzhong Shen ^{a,*}, Feng Liu ^b, Xiang Li ^b

^a Institute of Solar Energy, and Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China

^b Suzhou SolaRing Technology Co., Ltd., Suzhou 215200, Jiangsu Province, People's Republic of China

P-ink PERC Cells

Coating

P concentration distribution

Nonuniformity of Sheet R

扩散温度	800°C	850°C	900°C
磷浓度			
3%	\	\	3.50%
4%	\backslash	\backslash	2.60%
5%	\backslash	1.15%	3.90%
6%	\backslash	1.74%	5.23%
7%	\setminus	3.28%	5.30%
8%	1.22%	3.49%	3.47%

	方阻	Uoc(V)	Isc(A)	$\mathtt{Rs}(\mathtt{m}\Omega)$	$\operatorname{Rsh}(\Omega)$	FF (%)	Ncell(%)	
	液态磷源扩散(100Ω/口)	0.654	9.73	2.19	105	79.18	20.62	
P-ink	液态磷源扩散(100Ω/口)	0.657	9.79	2.42	126	79.99	21.06	
	液态磷源扩散(100Ω/口)	0.661	9.77	2.96	161	80.01	21.14	
PERC Cells	液态磷源扩散(100Ω/口)	0.657	9.79	2.80	162	79.75	21.01	
	平均值(100Ω/口)	0.657	9.77	2.59	139	79.73	20.95	
	常规POC1 ₃ 扩散(95Ω/口)	0.657	9.77	2.42	130	79.94	20.99	
	常规POC1 ₃ 扩散(95Ω/口)	0.656	9.71	1.88	187	80.03	20.88	
Traditional	常规POC1 ₃ 扩散(95Ω/日)	0.655	9.77	2.46	204	80.23	21.01	
POCI	常规POC1 ₃ 扩散(95Ω/日)	0.657	9.76	2.50	38	80.18	21.05	
	常规POC1 ₃ 扩散(95Ω/日)	0.657	9.77	2.09	225	80.41	21.12	
diffusion	常规POC1 ₃ 扩散(95Ω/日)	0.660	9.75	2.91	213	80.24	21.14	
PERC Cells	常规POC1 ₃ 扩散(95Ω/口)	0.651	9.76	2.71	162	79.52	20.67	
	常规POC1 ₃ 扩散(95Ω/日)	0.658	9.76	2.45	149	80.18	21.07	
	平均值(95Ω/囗)	0.656	9.76	2.43	164	80.09	20.99	

PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS Prog. Photovolt: Res. Appl. 2011; 19:275–279

RESEARCH ARTICLE

High efficiency screen printed bifacial solar cells on monocrystalline CZ silicon

L. Yang^{1*}, Q.H. Ye¹, A. Ebong², W.T. Song³, G.J. Zhang³, J.X. Wang³ and Y. Ma³

¹ Solar Energy Institute of the Physics Department, Shanghai Jiao Tong University, Shanghai, PR China

² University Center of Excellence for Photovoltaic Research and Education, School of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Drive, Atlanta, GA 30332-0250, USA

³ Solarfun Co., Ltd, Linyang Road 666, Qidong, Jiangsu, China

Advantages of n-type Si

- Higher minority carrier lifetime
- More tolerable to metal impurities
- No LID
- Better weak light performance

Main technologies

BBr₃ diffusion + **P ion-implantation**

(simplify the process flow and mass production in 2015)

ALD $Al_2O_3 + PECVD SiN_x: H FSF passivation (2015)$

4 BJBC: P ion-implantation + BBr₃ diffusion with Eff > 22%

上海交通大學

Prog. Photovolt.: Res. Appl. 25, 441-451 (2017)

(5) Silicon Heterojunction Solar Cells for Efficiency over 22%

Wenzhong Shen and Zhengping Li, *Physics and devices of silicon heterojunction solar cells*, Scientific Press, 2014, Beijing, ISBN: 978-7-03-041514-1.

科学出版社, 2014年度国家科学技术学术著作出版基金资助

PECVD

Screen Printing

Complete Pilot Line of Heterojunction Solar Cells

n-SHJ双面电池技术 (Bifaciality 95%+)

High density high power module

Normal 72 cell size

TÜVRheinland® Precisely Right.

HD Module

reduce electrical loss

160MWp mass production under way (2017)

6 Ultrathin c-Si solar cells (<50μm)

Advantages:

- Lower consumption of c-Si materials, thus lower cost;
- ✓ Have a potential to higher Voc;
- ✓ Lower requirement for Si quality;

✓ Flexible.

Disadvantage:

 As an indirect band gap material, ultrathin c-Si solar cells may easily suffer from poor light absorption, which results in low photocurrent.

Light management is extremely important in ultrathin c-Si solar cells!

All-solution-processed nanopyramids for ultrathin c-Si

Two steps: (1) depositing Ag nanoparticles in $AgNO_3$ solution; (2) etched in alkaline solution.

Free of lithography or ion etching process, it is an all-solution process. The technique to form Si nanopyramids is very easy and cheap.

The success of forming Si nanopyramids lies in the transferred generation site of H_2 bubbles.

S. Zhong, et al., Adv. Funct. Mater. 26, 4768 (2016)

All-Solution-Processed Random Si Nanopyramids for Excellent Light Trapping in Ultrathin Solar Cells

Sihua Zhong, Wenjie Wang, Yufeng Zhuang, Zengguang Huang, and Wenzhong Shen*

Applying the all-solution-processed nanopyramids to ultrathin c-Si (30 μ m), near-Lambertian light trapping effect is achieved, the calculated J_{sc} is far higher than that of the planar c-Si.

Realization of quasi-omnidirectional solar cells with superior electrical performance by all-solution-processed Si nanopyramids

DOI: 10.1002/advs.201700200

7 Perovskite/c-Si tandem solar cells (TSC)

Advantages:

- Potentially surpass the 29.4% S-Q one junction limit
- Effectively harvest entire solar spectrum
- **Tunable bandgap energies**

>30% Perovskite/c-Si TSC with varying inverted nanopyramid dimensions

D. Shi, et al., Scientific Reports 5, 16504 (2015)

Best 2-T experimental results so far: 23.6%

K. A. Bush, et al., Nature Energy 2, 17009 (2017)

surface texture

4%_{abs} increase

上海交通大學

2017年11月16-18日中国·徐州

大会特色专题 (16 Special Topics in 13th CSPV):

晶硅材料技术与装备

Silicon Material Technology

PERC 技术与应用 PERC Coll Technology and A

PERC Cell Technology and Application

N 型电池技术及双面组件应用

N-type Cell Technology and Bifacial Module Application

Towards 25% Industrial Silicon Solar Cells

ECN

PERC+, n-PERT and Beyond: From Solar Cells to Systems

SERAPHIM®

双面双玻组件技术与应用

Double Glass Bifacial Module Technology and Application

先进组件技术与应用

Advanced Module Technology and Application

2017年11月16-18日中国·徐州

领跑+长跑一光伏关键辅材技术与应用

PV Auxiliary Material Technology and Application

高可靠封装材料

Highly Reliable Module Encapsulating Materials

分布式户用光伏发电系统

Distributed PV Generation System

跟踪系统技术与应用

Tracking System Technology and Application

储能+能源互联网应用

Energy Storage + Internet Application

屋顶分布式专题暨第六届蓝天实验者光伏高能会 Roof Distributed PV Application

光伏绿色智能制造

大家 宁夏小牛自动化设备有限公司 NingXia XN Automation Equipment Co. Ltd. PV Intelligent Manufacturing

户外实证检测与认证

■团 Outdoor Testing and Certification

新一代太阳电池技术和计量

New Generation Solar Cell Technology and Metrology

2018年中国太阳级硅及光伏发电研讨会 (14th CSPV)将于2018年11月在西安举办

承办单位:隆基绿能科技股份有限公司 Longi E 请关注CSPV官网: http://cspv.shses.org/ 征集协办、支持和冠名单位...

