Calculating Model Shading Inputs from Design Data

Presented at the 2013 Sandia PV Performance Modeling Workshop Santa Clara, CA. May 1-2, 2013 Published by Sandia National Laboratories with the Permission of the Author

Tarn Yates May 2nd, 2013

© Borrego Solar Systems, Inc. Private & Confidential

www.borregosolar.com

Topics

> The need to integrate shade calculations into Design Tools

- > Borrego AutoSHADE Tool
- ≻ Helios 3D
- > Next Steps

Commercial & Utility Project Development

Borrego Solar created over 650 proposal designs in 2012!

>There is typically a short time period to complete proposal design / value engineering

> Important design decisions are locked in during the sales process

Commercial & Utility Project Development

Shade Models

PVsyst "Near Shadings" tool is incredibly valuable, but also time consuming and cumbersome to use

>Models can take half a day or more to build

Exiting 2D Models

- A proposal design is created in AutoCAD for every project
- This design can be used as a shade model
- Location of shade obstructions is facilitated by background image
- Eliminates duplicate effort of recreating a shade model in PVsyst

VBA Program for AutoCAD

Basic Inputs

≻Site Latitude

Module tilt and azimuth

>Obstruction Heights

Direct Shading

Draws shade outlines on an hourly and monthly basis

>Checks if a module/string is intersected by or inside one or more shade outlines

Calculates a direct irradiance derate factor based on the percentage of modules/strings that are shaded

Diffuse Shading

Calculates obstruction width and height angles from each module/string location

© Borrego Solar Systems, Inc. Private & Confidential

Excel Interface

	12 X 24 Shade Table Paste in Hourly Derate Factors from AutoShade Tool																							
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Jan	1.00	1.00	1.00	1.00	1	1	1	0.48	0.55	1	1	1	1	1	1	0.7	0.48	1	1	1	1.00	1.00	1.00	1.00
Feb	1.00	1.00	1.00	1.00	1	1	1	0.5	0.9	1	1	1	1	1	1	0.9	0.5	1	1	1	1.00	1.00	1.00	1.00
Mar	1.00	1.00	1.00	1.00	1	1	0.5	0.8	1	1	1	1	1	1	1	1	0.8	0.5	1	1	1.00	1.00	1.00	1.00
Apr	1.00	1.00	1.00	1.00	1	0.73	0.5	1	1	1	1	1	1	1	1	1	1	0.5	0.73	1	1.00	1.00	1.00	1.00
May	1.00	1.00	1.00	1.00	1	0.9	0.83	1	1	1	1	1	1	1	1	1	1	0.83	0.9	1	1.00	1.00	1.00	1.00
Jun	1.00	1.00	1.00	1.00	1	0.98	0.93	1	1	1	1	1	1	1	1	1	1	0.93	0.98	1	1.00	1.00	1.00	1.00
Jul	1.00	1.00	1.00	1.00	1	0.93	0.93	1	1	1	1	1	1	1	1	1	1	0.93	0.93	1	1.00	1.00	1.00	1.00
Aug	1.00	1.00	1.00	1.00	1	0.78	0.6	1	1	1	1	1	1	1	1	1	1	0.6	0.78	1	1.00	1.00	1.00	1.00
Sep	1.00	1.00	1.00	1.00	1	1	0.5	0.9	1	1	1	1	1	1	1	1	0.9	0.5	1	1	1.00	1.00	1.00	1.00
Oct	1.00	1.00	1.00	1.00	1	1	1	0.5	1	1	1	1	1	1	1	1	0.5	1	1	1	1.00	1.00	1.00	1.00
Nov	1.00	1.00	1.00	1.00	1	1	1	0.5	0.73	1	1	1	1	1	1	0.8	0.5	1	1	1	1.00	1.00	1.00	1.00
Dec	1.00	1.00	1.00	1.00	1	1	1	0.43	0.4	0.88	1	1	1	1	0.95	0.5	0.43	1	1	1	1.00	1.00	1.00	1.00

Enter Shading Factor for Difuse: 0.96

Results								
Pre-Shade kWh	10637							
Post-Shade kWh	10367							
Near Shading Losss	2.5%							

>Excel tool combines: hourly direct derate factors, an annual diffuse derate factor, and an 8760 report with kWh and Incident Beam to Global Ratio

>Takes minutes rather than hours

>Shows reasonable agreement with PVsyst Near Shading calculations

© Borrego Solar Systems, Inc. Private & Confidential

www.borregosolar.com

Powerful tool for site layout on uneven terrain

- Shade models that account for slopes
 - >Variable row spacing based on time specific shade windows

Can not currently import shade objects (buildings, trees, power lines, etc.) into PVsyst

Next Steps

Shade calculations should be AutoCAD based

> Or production modeling tools need the ability to import AutoCAD models

 Develop a "universal" AutoCAD layout tool
Model building blocks need to be controlled to produce reliable shade models

Modify production modeling tools to accept external shade factors

SAM has this functionality

>Should there be a standard?

Borrego Solar Systems, Inc. 360 22nd St. Oakland, CA 94612

www.borregosolar.com Phone (888) 898-6273 Fax (888) 843-6778

Tarn Yates tyates@borregosolar.com

© Borrego Solar Systems, Inc. Private & Confidential

www.borregosolar.com