Calibration methodology of the University of Oregon Solar Radiation Monitoring Laboratory

Dr. Josh Peterson

2018-05-01

- Overview of calibration procedure
- Calibration program details
- Demonstration of calibration program
- Results and implementation

SRML Network of Monitoring Stations

★ 1st Class Stations

Subsidiary Stations

- The SRML operates a network of around 20 solar monitoring stations
- **50 -100 sensors** continuously deployed.

University of Oregon

Solar Radiation Monitoring Laboratory

- The calibration of such a diverse network is a non-trivial task.
- To streamline and standardize the process,
 a new calibration software program has been developed.

What is a calibration

- A outdoor calibration is a comparison of two instruments that make the same type of measurement.
 - The *reference instrument* is considered the standard
 - The *field instrument* is the instrument being calibrated
- The field instrument can be recalibrated such that it's values match the reference instrument.

$$I_{RF} = I_{field} = \frac{V}{R_{new}}$$
 $rightarrow$ $R_{new} = \frac{V}{I_{RF}}$

I_{RF} = Irradiance reference instrument

I_{field} = Irradiance field instrument

V = Voltage field instrument

R_{new} = New responsivity of field instrument

Steps involved in calibrations

- 1. Make measurements of the sky with various instruments
- 2. Analyze the data
 - Eliminate unwanted data points
 - Compute the responsivity of the instrument on that particular day
 - Compute the uncertainty of the data
- 3. Compute the responsivity of instrument as a function of time.
- 4. Apply the new responsivity to the instruments in question

Challenges in analyzing the data

Hardware/Software challenges

Varying data structure and time formats

Data challenges

Selecting the data points actually used in the calibration

Calculation challenges

- Varying reference instruments
- Computing GHI reference from DNI and DHI
- Computing the uncertainty of the calibration
- Selecting data points in a particular SZA range
- Applying thermal offsets adjustments

Solution to these challenges

A new calibration program

Hardware/Software challenges

Accepts multiple data and time format structures

Data challenges

Allows the user to manually identify qualifying data points using a graphical user interface.

Calculation challenges

Performs all necessary calculations and outputs final responsivity and uncertainty values for each instrument.

Input calibration file (Example 1)

From the 2017 Seattle calibration file

Input calibration file (Example 2)

From the Seattle station

Program number (not used in analysis)

Year (not used in analysis)

<u>ROW 1 LOOKUP labels</u>				
GHI_RF, GHI,	DHI_RF, DHI,	DNI_RF, DNI,	TEMP_RF, TEMP	
Other labels are fine, but the program will not automatically see them Examples: GHI_TILT_RF Air_Pressure etc.				

Before the data is analyzed

- 1. Date/time of each data point determined
- 2. Sun position for each point calculated (SZA, AZM)
- 3. Offset adjustments to data is applied
 - Nighttime value, Thermal offset
- 4. Reference instruments defined
 - Measured or calculated
- 5. Reference instrument uncertainties defined
- 6. Ratio of instruments computed
- 7. Good and Bad lists created

1. Date/time of each data point determined

• User is asked to identify the time format of the input file

 All formats are computed to standard format Day_of_Year . Fraction_of_day

10

Solar Radiation Monitoring Laboratory

2. Sun position calculated

- Translation of the SOLPOS code is implemented <u>https://midcdmz.nrel.gov/solpos/</u>
- Solar Zenith Angle (SZA) and Azimuthal Angle (AZM) are both calculated
- Effects due to refraction are included
- Plans are underway to incorporate Solar Position Algorithm (SPA)

3. Offset adjustments to data applied

- Offset = Average instrument value at night (SZA > 108°)
- Assumption: Daytime offset = Nighttime offset
- Offset adjustment to field and reference instruments

- Uncertainties associated with the offset are included in uncertainty calculation
- Common offset values
 - PSP Pyranometer $\approx -2 -6 \text{ W/m}^2$
 - LICOR Pyranometer $\approx 0 -1 \text{ W/m}^2$
 - NIP Pyrheliometer $\approx 0 -1 \text{ W/m}^2$

4. Reference instruments are defined

• User is asked to define the reference instruments

GHI, DNI, DHI can be calculated from other reference instruments

 $GHI_{RF} = DNI_{RF} Cos[SZA] + DHI_{RF}$

5. Reference instrument uncertainties defined

- The uncertainty of the reference instrument responsivity is given by the user
 - Given as a percentage, expanded uncertainty, at SZA = 45°
- Uncertainty in the reference irradiance is computed using sum of squares method including:
 - Uncertainties in responsivity
 - Uncertainties in nighttime offset
 - Uncertainties in the data logger
 - Uncertainties in SZA (for calculated references)
- Computed using the GUM method to calculate uncertainty
 https://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf

6. Ratio of instruments computed

• The irradiance of the field instrument is compared to the irradiance of the reference instrument

$$Ratio = \frac{I_{field}}{I_{RF}}$$

- This is done for every data time of the calibration file
 - Not just SZA = 45°
- All irradiance values have the offset already applied
- The ratio is used in computing the new responsivity after the data is analyzed.

7. Good and Bad lists created

Each time interval (minute) is considered either "Good" or "Bad"

- If clouds were blocking the GHI sensor one minute, they were also blocking the DNI sensor that same minute.
- All instruments of this time interval are labeled as such.

Good list

- No obvious problems in this time interval
- Clear sky, no problems

Bad list

- Obvious problems disqualify this time interval
- Clouds, user adjustments, tracker alignment, etc.

niversity of Oregon

"NA" data points

- If one sensor is behaving strange but the other instruments are good.
- Within each list, it is possible to set individual instruments and data points to "NA".
- This instrument (at this time) is no longer a valid data point.

Demonstration of program

University of Oregon Solar Radiation Monitoring Laboratory

Various Buttons

Zoom Vertical or horizontal Mouse clicks move the graph	Delete Buttons Make the closest value "NA" Only applies to this one instrument All other instruments left unchanged
Day being plotted	<u>Add</u> Adds closest data points to good
One day or All days	list. All data points in this time interval
Forward or Backward	are made to "good" data points (Green).
Instrument being plotted	<u>Remove</u>: Removes closest data points
List of all columns	from good list. All data points in this time
Common reference instruments	interval are made to "Bad" data points
The next instrument in the list	(Red).
	Compute new ratio Ratio = top/bottom Computes ratio of two columns defined by user.

Plot: Instrument value vs time

Plot: Instrument value vs altitude

- Data is averaged into two degree SZA bins.
- Only good data is considered.
- Morning and afternoon data are considered separately
 - A = Morning (AM) P = Afternoon (PM)
 - Discrepancies between morning and afternoon can be seen

Calibration output values

- After the data has been analyzed the following quantities are written to an output file:
- The new responsivity at SZA = 45°

 $R_{new} = Ratio(45) * R_{old}$

- Expanded uncertainty in responsivity at SZA = 45° and 30 ° < SZA < 60 °
 - Uncertainty calculations follow the rules of the GUM • model.
- General information about the conditions during the calibration. 21 University of Oregon Solar Radiation Monitoring Laborate

Calibration results Example 1

This instrument is currently in Eugene Oregon making GHI measurements

 $I = \frac{V}{R}$

- Responsivity (2018) R = 8.5008 (±.162) V/(W/m²)
- Calibrations will be performed this summer
- These values will be added to this list
- Tentative Responsivity for 2019 is R = 8.4148

Calibration results Example 2

This instrument is currently in Eugene making DNI measurements

 $I = \frac{V}{R}$

University of Oregon Solar Radiation Monitoring Laboratory

- Responsivity (2018) R = 8.1338 (±.06675) V/(W/m²)
- Calibrations will be performed this summer
- These values will be added to this list
- Tentative Responsivity for 2019 is R = 8.1338 W/m²

Are there any questions

- Website: http://solardat.uoregon.edu/index.html
- Phone: (541) 346-4745
- Email: jpeters4@uoregon.edu
- I would like to thank the following people for their contribution to this work
 - Frank Vignola (for offering guidance and support)
 - **Rich Kessler** (for sitting in the sun many days and answering all my questions)

The SRML would like to thank the following sponsors:

- The Bonneville Power Administration
- The Energy Trust of Oregon
- The Oregon Department of Energy
- The National Renewable Energy Laboratory
- Portland General Electric

Calculating the new responsivity a bit of math

- Define the irradiance of the field instrument
 - Note the Voltage (V) listed has already had the thermal offset adjustment subtracted.

$$I_{field \ old} = \frac{V}{R_{field \ old}} \qquad \qquad I_{RF} = I_{field \ new} = \frac{V}{R_{field \ new}}$$

• Define the a ratio of irradiance values

$$\text{Ratio} = \frac{I_{\text{field old}}}{I_{\text{RF}}} = \frac{I_{\text{field old}}}{I_{\text{field new}}} = \frac{V/Rold}{V/R_{\text{new}}} = \frac{R_{\text{new}}}{R_{old}}$$

• Solve for the new responsivity R_{new}

 $\mathbf{R}_{\text{new}} = \text{Ratio} * \text{Rold} = \frac{I_{field \ old}}{I_{RF}} * \text{Rold} = \frac{V/Rold}{I_{RF}} * R_{old} = \frac{V}{I_{RF}}$

• Which confirms our original statement