

Comparison of ray tracing rendering technique with ground measurements for improved solar radiation modeling

Lukas Dvonc, Peter Orosi, <u>Tomas Cebecauer</u>, Branislav Schnierer Solargis, Slovakia

PVPMC Salt Lake City, 23 - 24 August 2022

About Solargis

Solar resource, meteorological and photovoltaic simulation data, software and expert services for power industry

Prospection Project development Monitoring Forecasting

5000+ projects per year

20+ years of experience in solar industry

PVPMC August 23-24 Salt Lake City 2

Content

- Next generation of PV simulator
- Ray-tracing algorithm
- Verification of GTI simulation
- Comparison to Bifacial_radiance
- Conclusions and future work

Next generation of PV simulator (SGSIM)

Current status of SGSIM model:

- Includes both ray-tracing and view factor methods
- Detailed scene creation (shading objects, plant layout, ...)
- Single diode model, inverter, transformer and cabling models
- Up to 1-minute data resolution, multiyear time series

Validation of the new simulator:

- Optical part : Bifacial_radiance bifacial_radiance and ground measured data
- Electrical part: LTspice (Analog Devices)

Current challenges

- Improvement of computational performance (view factor, ray-tracing combination, optimization)
- Complex snow and soiling losses models

Computational scheme of SGSIM

- · Input site parameters
 - Location, terrain parameters
 - Solar radiation inputs (GHI, DNI)
 - Sun path, solar geometry
- · Input meteo and environmental parameters
 - PWAT, TEMP, WS
 - Albedo
 - Rainfall, Snow, Dust
- Input technical parameters
 - · Modules type, quantity, mounting, layout
 - Shading objects
 - Cabling
 - · Inverters, Transformers, Self consumption, Availability

Content

- Next generation of PV simulator
- Ray-tracing algorithm
- Verification of GTI simulation
- Comparison to Bifacial_radiance
- Conclusions and future work

Ray-tracing algorithm

- Custom implementation
- Monte Carlo backward path-tracing (from cell to the source of light)
 - Multiple bounces until the source of light is reached
 - Fully converged unbiased per cell solution for Lambertian surfaces (no specular yet)
 - Universal 3D scene arbitrary panel placement & bifacial simulation
- Sky model is adapted from Perez models (uses Solargis data):
 - Isotropic
 - Anisotropic (all-weather sky model)
- Easily extendable to more detailed models of sky (assuming the more detailed sky data is available)

PVPMC August 23-24 Salt Lake City 8

Isotropic vs All-Weather sky model radiance distribution

PVPMC August 23-24

Ray-tracing algorithm

- Backward path-tracing is more effective than forward path-tracing, but still computationally demanding
- Current version is running on GPU
- Example:
 - Cca 4 MWp power plant
 - 1 year of time series
 - Trackers, backtracking, bifacial
 - PV cell level
- Factors impacting duration of the simulation
 - Amount of time slots linear dependency
 - Installed capacity linear in case of the same configuration, possible optimization
 - Path tracing accuracy tuning of parameters
 - Hardware, Thread count the more power/count the better, simulation is separated to parallel tasks
 - GPU / CPU graphic processors dedicated to 3D operations

No.	Time step	Simulation time
1	Hourly	10 – 15 minutes
2	15 minute	45 – 60 minutes
3	1 minute	9 – 10 hours

Content

- Next generation of PV simulator
- Ray-tracing algorithm
- Verification of GTI simulation ground measurements
- Comparison to Bifacial_radiance
- Conclusions and future work

Verification against Ground measure data (NREL – SRRL BMS station)

- Lat: 39.742, Lon: -105.178, Alt: 1828 m
- 1-min time resolution for all measured data
- Time period whole year 2021
- Several available pyranometer mounting for different GTI measurement
- Quality check performed for each measured timestamp

Measured quantity [W/m ²]	Device type
GHI	Global_CMP22
DNI	Direct_CHP12
GTI south, 40° tilt	CMP22
GTI east, west, north, south 90° tilt	LI200, (PSP for north orientation)
GTI NS tracker (no limit angles)	CMP22
GTI 2-axis tracker (no limit angles)	CMP22

PVPMC August 23-24 Salt Lake City 13

Source: NREL

Goal is to validate the integration of backward ray-tracing & transposition model implementation

- Simulated GTI with no losses was taken to comparison ٠
- Perez isotropic (iso) & Perez All-weather (aniso) sky models have been used for GTI simulation •
- RMSD and Bias evaluated for each mounting ٠
- Only data/timestamps which pass quality check has been taken as valid
- 1-min and 15-min measured data used for analysis ٠

General results overview

	RMSD [%]				Bias [%]			
Data aggregation	1-min data		15- min data		1-min data		15- min data	
Sky model	ISO	ANISO	ISO	ANISO	ISO	ANISO	ISO	ANISO
2-axis tracker	6.7	6.5	6.0	5.9	-0.7	-1.1	-0.4	-0.7
1-axis N-S tracker	5.2	5.0	4.4	4.2	-0.5	1.0	-0.2	0.6
Fixed tilt 40° South oriented	5.1	5.0	4.0	3.9	-0.7	-1.0	-0.4	-0.7
Fixed tilt 90° South oriented	10.5	9.6	10.1	9.1	-6.9	-6.0	-6.8	-5.6
Fixed tilt 90° East oriented	16.0	15.8	16.1	15.8	-11.2	-10.6	-11.1	-10.5
Fixed tilt 90° West oriented	13.9	14.9	13.4	14.5	-7.9	-9.5	-7.6	-9.0
Fixed tilt 90° North oriented	23.6	20.8	24.1	21.5	-14.1	-10.5	-14.3	-10.7

PVPMC August 23-24 Salt Lake City 15

General results overview

	RMSD [%]				Bias [%]			
Data aggregation	1-min data		15- min data		1-min data		15- mi	n data
Sky model	ISO	ANISO	ISO	ANISO	ISO	ANISO	ISO	ANISO
2-axis tracker	6.7	6.5	6.0	5.9	-0.7	-1.1	-0.4	-0.7
1-axis N-S tracker	5.2	5.0	4.4	4.2	-0.5	1.0	-0.2	0.6
Fixed tilt 40° South oriented	5.1	5.0	4.0	3.9	-0.7	-1.0	-0.4	-0.7
Fixed tilt 90° South oriented	10.5	9.6	10.1	9.1	-6.9	-6.0	-6.8	-5.6
Fixed tilt 90° East oriented	16.0	15.8	16.1	15.8	-11.2	-10.6	-11.1	-10.5
Fixed tilt 90° West oriented	13.9	14.9	13.4	14.5	-7.9	-9.5	-7.6	-9.0
Fixed tilt 90° North oriented	23.6	20.8	24.1	21.5	-14.1	-10.5	-14.3	-10.7

PVPMC August 23-24 Salt Lake City 16

40° tilt, south oriented : 1-minute data

PVPMC August 23-24 Salt Lake City 17

40° tilt, south oriented: 15-minute data

PVPMC August 23-24 Salt Lake City 18

Single axis NS tracker: 1-minute data

PVPMC August 23-24 Salt Lake City 19

2-axis tracker: 1-minute data

PVPMC August 23-24 Salt Lake City 20

General results overview

	RMSD [%]				Bias [%]			
Data aggregation	1-min data		15- min data		1-min data		15- m i	n data
Sky model	ISO	ANISO	ISO	ANISO	ISO	ANISO	ISO	ANISO
2-axis tracker	6.7	6.5	6.0	5.9	-0.7	-1.1	-0.4	-0.7
1-axis N-S tracker	5.2	5.0	4.4	4.2	-0.5	1.0	-0.2	0.6
Fixed tilt 40° South oriented	5.1	5.0	4.0	3.9	-0.7	-1.0	-0.4	-0.7
Fixed tilt 90° South oriented	10.5	9.6	10.1	9.1	-6.9	-6.0	-6.8	-5.6
Fixed tilt 90° East oriented	16.0	15.8	16.1	15.8	-11.2	-10.6	-11.1	-10.5
Fixed tilt 90° West oriented	13.9	14.9	13.4	14.5	-7.9	-9.5	-7.6	-9.0
Fixed tilt 90° North oriented	23.6	20.8	24.1	21.5	-14.1	-10.5	-14.3	-10.7

PVPMC August 23-24 Salt Lake City 21

South oriented 90 tilt: 1-minute data

PVPMC August 23-24 Salt Lake City 22

Vertical oriented panels (west, south, east): 1-minute data

PVPMC August 23-24 Salt Lake City 23

General results overview

	RMSD [%]				Bias [%]			
Data aggregation	1-min data		15- min data		1-min data		15- min data	
Sky model	ISO	ANISO	ISO	ANISO	ISO	ANISO	ISO	ANISO
2-axis tracker	6.7	6.5	6.0	5.9	-0.7	-1.1	-0.4	-0.7
1-axis N-S tracker	5.2	5.0	4.4	4.2	-0.5	1.0	-0.2	0.6
Fixed tilt 40° South oriented	5.1	5.0	4.0	3.9	-0.7	-1.0	-0.4	-0.7
Fixed tilt 90° South oriented	10.5	9.6	10.1	9.1	-6.9	-6.0	-6.8	-5.6
Fixed tilt 90° East oriented	16.0	15.8	16.1	15.8	-11.2	-10.6	-11.1	-10.5
Fixed tilt 90° West oriented	13.9	14.9	13.4	14.5	-7.9	-9.5	-7.6	-9.0
Fixed tilt 90° North oriented	23.6	20.8	24.1	21.5	-14.1	-10.5	-14.3	-10.7

PVPMC August 23-24 Salt Lake City 24

North oriented vertical panels: 1-minute data

PVPMC August 23-24 Salt Lake City 25

Sources of discrepancies:

- model limitations (sky model, ray-tracing)
- accuracy of GTI measurements
 - east, west, north, south 90° tilt (LI200 instrument)
 - north 90° tilt (PSP)
- representativeness of ground albedo
 - Simple local albedo was used, Lambertian assumption
 - complex 3D scene was not simulated
- local shading

Content

- Next generation of PV simulator
- Ray-tracing algorithm
- Verification of GTI simulation
- Comparison to Bifacial_radiance
- Conclusions and future work

PVPMC August 23-24 Salt Lake City 27

Comparison to Bifacial_radiance

Verification against NREL ray-tracing software package

- Distribution of GTI over the panel front surface has been compared ٠
- Very good match for unshaded panel areas (front panel, upper part of panel) •
- Non negligible differences for Isotropic model in case of diffuse shades (lower ٠ part of panels) has been found even if no direct shades occurred.

٠

PVPMC August 23-24 Salt Lake City 28

y position in table [m] 5.0

550

Comparison to Bifacial_radiance

- Updated sky model = very good overlap between SG2 and Bifacial_radiance results on both front and rear panel sites
- Small differences caused by stochastic nature of ray-tracing method

Verification of shading simulation – Bifacial_radiance

- Optical part of simulation Ray tracing method
- Saudi Arabia site Clear sky 17th June 2021 2 rows of PV modules Back side

Content

- Next generation of PV simulator
- Ray-tracing algorithm
- Verification of GTI simulation
- Comparison to Bifacial_radiance
- Conclusions and future work

PVPMC August 23-24 Salt Lake City 31

Conclusions and future work

- Good match of ray-tracing + aniso sky model with Bifacial_radiance
- Good match in case of "sun oriented" panel surface (trackers and 40° tilted south oriented surface)
- Highest discrepancies for surfaces when mainly DIF and reflected irradiance is present.

Future work

- Additional analysis of input data (far horizon, surrounding scene, reflections,...)
- Further development in basic research is required (sky model, ground reflection)
- Possible upgrade of reflection phenomena (specular reflection) could improve the results match

PVPMC August 23-24 Salt Lake City 32

Thank you for your attention !

Solargis http://solargis.com

PVPMC August 23-24 Salt Lake City 33