

Comparison of TPT and Thermally Conductive Backsheets in PV Modules

Ashwini Pavgi¹, Jaewon Oh^{1, *}, George Kelly², Govindasamy Tamizhmani¹

¹Arizona State University Photovoltaic Reliability Laboratory (ASU-PRL), Mesa, Arizona, USA ²Sunset Technology, Mount Airy, MD 21771, USA

Introduction

- Module temperature plays the second largest role, next to irradiance, in dictating the performance of photovoltaic (PV) modules
- The thermal conducting property of PV module backsheet can have a large impact on the module operating temperatures
- The focus is to compare cell and backsheet temperatures of modules with Tedlar-Polyester-Tedlar (TPT) and four thermally conductive backsheets (TCB) installed at different sites having varied climatic conditions
- In this study, thermal conductivity of backsheets and NOCT of modules with these backsheets (T_{BS}) were also measured to compare TCBs and TPT.

Experimental Setup

3. Backsheet and Cell Temperatures: Seasonal Trends

3.1 Comparison between 2 TCBs and TPT at different sites

Site	AZ-1 site	AZ-2 site	NC site
Weather condition	Hot and dry (low wind speed)	Hot and dry (high wind speed)	Temperate

- Glass/EVA/Cell/EVA/Backsheet Modules (20.5" x 22" nine-cell modules)
- TPT: Tedlar-PET-Tedlar
- TCB_A: PVDF-PET-EVA
- TCB_B: PA-Aluminum-PET-PA (polyamide)
- TCB_C: encapsulant -PET-ECTFE (fluoropolymer)
- TCB_D: PA- Core layer- E layer (modified polyolefin)
- Identical module installation
- Data analysis (seasonal trends)
 - Fall 2018: September 21st- December 20th
 - Winter 2019: December 21st- March 20th

Fig. 1(a) 8 nine-cell modules installed at AZ-1 site

1 TC (1 backsheet

Fig. 3(a) ΔT_{BS} (TPT-TCB_C/TCB_D) seasonal trend at 3 sites Fig. 3(b) ΔT_{cell} (TPT-TCB_C/TCB_D) seasonal trend at 3 sites Fig. 3(b) ΔT_{cell} (TPT-TCB_C/TCB_D) seasonal trend at 3 sites Fig. 3(b) ΔT_{cell} (TPT-TCB_C/TCB_D) seasonal trend at 3 sites

3.2 Comparison between 4 TCBs and TPT at AZ-1 site

Fig. 4(a) ΔT_{backsheet} trends between TPT and 4 TCBs at AZ-1 site Fig. 4(b) ΔT_{cell} trends between TPT and 4 TCBs at AZ-1 site

ΔT_{BS} values in Fall > ΔT_{BS} values in Winter. But Fall and Winter seasons have same ΔT_{cell} trends.
ΔT_{cell}, the actual cell temperature differences between TPT and all TCBs, are higher than ΔT_{BS} values
Median ΔT_{cell} values between TPT and TCB_A is about 2 °C and highest than with any other TCBs

4. Cell-to-cell differences between TPT and TCBs

(a) TPT	(b) TCB_C	(c) TCB_D
55 700	55 720	

Fig. 1(b) 6 nine-cell modules installed at AZ-2 site

Fig. 1(c) 6 nine-cell modules installed at NC site

6 TC (3 cell, 3 backsheet)

Results and Discussion

1. Thermal conductivity of backsheets

 All TCBs clearly have higher axial thermal conductivity values as compared to TPT as measured by a thermal-conductivity meter

2. Nominal Operating Cell Temperatures (NOCT)

- NOCT represents cell temperature under 800 W/m² irradiance, 20 °C ambient temperature, and 1 m/s wind speed.
- Individual NOCT determined by taking average of NOCT measured on three clear sunny days
- The NOCT of TCB_A is about 2 °C lower than TPT

Back sheet	Axial Thermal	Radial Thermal		
manufacturer	Conductivity (W/m·K)	Conductivity (W/m·K)		
TPT	0.153	0.486		
TCB_A	0.259	0.371		
TCB_B	0.382	13.53		
TCB_C	0.256	0.387		
TCB_D	0.238	0.343		
Table 1: Thermal conductivity values measured at 24 °C				

Fig. 5 Histogram of temperatures between center, corner, and edge at AZ-1 site for Fall 2018 (a) TPT (b) TCB_C (c) TCB_D

Center cell operates at about 2 °C higher than edge/corner, temperature differences highest in TPT
TCB-based module maintain more uniform temperature throughout the module compared to TPT

Conclusions

The thermal conductivity measurements clearly showed that TCBs have higher axial TC than TPT
NOCT values of nine-cell modules are lower for TCB than TPT with difference as high as 2 °C in TCB_A
All TCBs (TCB_A, TCB_B, TCB_C and TCB_D) operate at lower cell temperatures than TPT under hot climatic conditions. Since backsheet temperatures are largely and dynamically affected by wind speed, only TCB_A operates at lower temperature as compared to TPT

TCB_C and TCB_D nine-cell modules operate at lower cell temperatures than TPT in temperate climates

