

Decreasing PV Module Temperature with Thermally Conductive Backsheets

<u>Jaewon Oh</u>¹, Ashwini Pavgi¹, Balamurali Rammohan¹, Sai Tatapudi¹, Govindasamy Tamizhmani¹, George Kelly², and Michael Bolen³

¹Arizona State University - Photovoltaic Reliability Laboratory (ASU-PRL) ²Sunset Technology ³Electric Power Research Institute

10th PVPMC Workshop, Albuquerque, NM, USA; May 1st 2018

Introduction

Why lowering PV module temperature?

- > Efficiency increase
 - Thermal property of solar cell
 - $\checkmark \quad \checkmark \quad T_{cell} \Rightarrow \mathsf{P}_{max} \uparrow$
 - P_{max}: -0.5%/°C
- Longer lifetime of PV module
 - Less thermal stress

SunShot Progress and Goals

*Levelized cost of electricity (LCOE) progress and targets are calculated based on average U.S. climate and without the ITC or state/local incentives. The residential and commercial goals have been adjusted for inflation from 2010-17.

System: 2100 PV modules, 600 – 1500V, 500 kWdc

Module: 72 cells, ~43V

Cell: ~0.6V

Introduction

- 1. Conventional backsheet
 - Tedlar/PET/Tedlar (TPT)
 - ✓ Polyvinyl fluoride (PVF)
- 2. Thermally conductive backsheet (TCB)
 - Polyvinylidene fluoride (PVDF)/PET/EVA \rightarrow **TCB_A**
 - Polyamide (PA)/AI/PET/PA → TCB_B
- 3. Glass substrate: G/G

 $\label{eq:source:http://www.dupont.com/products-and-services/solar-photovoltaic-materials/what-makes-up-solar-panel.html \equivalence \equivalence$

Passive cooling method

1-cell Module Fabrication

Material specification

- Cells: 156 x 156 mm² mono c-Si solar cells
- Glass: 8" x 11" Solite low iron Solar glass (3.2 mm thickness)
- Encapsulant: EVA
- Backsheets: TPT, TCB_A, TCB_B, Glass
- Tabbing and bus wires: Sn/PB (60/40)
- ✓ 8 modules were fabricated.
 - 2 TPT, 2 TCB_A, 2 TCB_B, 2 G/G

✓ Thin (36 AWG) thermocouple was attached to the back of the solar cell prior to lamination.

Characterization and Installation

- Characterization
 - 0 I-V
 - Electroluminescence (EL)
 - Infrared (IR)
 - o Thermal conductivity
 - Hot Disk TPS 2500S
- Rack
 - \circ South facing
 - \circ 45° fixed tilt
- Data acquisition system
 - Campbell scientific CR 1000
 - \circ Every 30s
 - $\circ~$ Temperature (cell & module), V_{oc} and weather data
- $\checkmark\,$ Modules are in open-circuit condition

Backsheet Type	lsc (A)	Voc (V)	lmp (A)	Vmp (V)	Pmax (W)	FF (%)
ТРТ	8.902	0.626	8.094	0.4285	3.469	62.2
TCB_A	8.744	0.623	7.995	0.4218	3.372	61.9
ТСВ_В	8.975	0.625	8.067	0.4269	3.444	61.4

CB A. TCB B. TPT G/G

I-V Parameters

Thermal Conductivity

Axial (through-plane) thermal conductivity

Radial (in-plane) thermal conductivity

- Both TCBs show higher thermal conductivity than TPT.
- TCB_B has extremely high radial thermal conductivity due the presence of thin aluminum layer.

Nominal Operating Cell Temperature (NOCT)

- NOCT: a reference characterization test procedure to quantify the module cell temperature for different module designs in a standard reference environment.
- NOCT testing condition (IEC 61215)
 - Irradiance: 800 W/m²
 - Ambient temperature: 20°C
 - Wind Speed: average 1 m/s
 - 45° tilt
- Measured at ASU-PRL (Mesa, AZ)
- 3 clear sunny days were selected for NOCT data collection and calculation

NOCT testing at ASU-PRL

Nominal Operating Cell Temperature (NOCT)

*NOCT value shown here is an average of two coupons per backsheet type

- ➤ TCB_A shows 1.1-1.2°C lower NOCT than TPT.
- It clearly indicates that TCB lowers the cell temperature by at least 1°C at NOCT conditions.
- ➢ NOCT of G/G is 1°C higher than TPT

Daily Operating Temperature

- > NOCT is an expected cell temperature only at NOCT weather condition.
- > NOCT condition does not exist through out the day or on all days in a month or year
- Performance of TCB will vary depending on the weather condition.

- ➢ Overall, TCB_A shows higher ∆T than TCB_B.
- ➤ At least one data with ΔT higher than 2°C was observed everyday for the whole month except for two days (May 14 & 15) which were highly cloudy day.
- ➤ A daily temperature of >2°C median ΔT is observed for 5 days in a month (May 2017).
- About 0.8°C ΔT observed from TCB_B

➢ Data range

- >400W/m² irradiance
- >0.25m/s wind speed
- 9 am to 3 pm time window
- Removed east (70°-110°) and west (250°-290°) wind direction

Daily Operating Temperature

Daily Average ΔT_{cell} (TPT01–TCB A01)

Day

9

- ➤ A daily temperature of >2°C median ΔT is observed for 15 days in a month (May 2017).
- At least one data with ΔT higher than 2°C was observed everyday for the whole month except for one day (May 14th), which was an extremely cloudy and windy day.
- ΔT as high as 5.8°C observed

1a State

The results clearly indicate that TCB_A reduces the operating temperature by at least 2°C as compared to TPT.

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

3.0

2.0

1.0

0.0

1 2

ΔT (°C)

Daily Operating Temperature

T_{voc} vs. T_{cell} vs. T_{backsheet}

 $\succ \Delta T_{cell}$ appears to be slightly better as compared to the one estimated by $\Delta T_{backsheet}$

Seasonal Effect on TCB Modules

- Monthly variations were observed from TCB_A modules
- Lower thermal performance in August, September, and March
- Overall, TCB_A shows lower temperature than TPT

Seasonal Effect on TCB Modules

- Less seasonal influence than TCB_A modules
- Best thermal performance is in January
- 0.5-0.7 °C median ΔT year around

Seasonal Effect on G/G Module

- G/G module showed ~1 °C lower temperature than TPT module in January, February, and March while all other months showed higher temperature than TPT.
- ➢ G/G module installation may be a good option for cold region.

Seasonal Effect on TCB modules

Summer: 6/21-9/20 Fall: 9/21-12/20 Winter: 12/21-3/20 Spring: 3/21-6/20

- TCB modules are less affected by seasonal change, especially for ambient temperature, while G/G module shows about 1 °C lower temperature at Winter season.
- \succ TCB_B shows stable Δ T through the year.

Empirical Thermal Model

 $T_{cell} = w_1 \cdot E + w_2 \cdot T_{amb} + w_3 \cdot WS + c$

 T_{cell} : cell temperature (°C) E: irradiance (W/m²) T_{amb} : ambient temperature (°C) WS: wind speed (m/s) w_1, w_2, w_3 : coefficients c: constant.

Types	E (w ₁)	T _{amb} (W ₂)	WS (w ₃)	С
TCB_A	0.0300	0.997	-1.484	1.106
TCB_B	0.0312	1.007	-1.439	0.406
ТРТ	0.0315	1.004	-1.424	0.725
Backsheet Average	0 0 3 0 9	1.003	-1.449	0.746
G/G	0.0324	1.024	-1.146	-0.265

✓ Data collected between 7 am−6 pm during two periods: May 1−31, 2017 (six glass/backsheet modules), and June 9–July 12, 2017 (six glass/backsheet modules and two G/G modules).

- Linear regression was used.
- The primary differentiator for temperature differences regarding TPT, TCB, and glass substrates is the irradiance level (solar gain due to reduced radiative and conductive losses).
- Wind speed level plays secondary role for the temperature difference regarding backsheets and glass substrates, but not between backsheet types.

ASU PRL

Empirical Thermal Model

zona State

Jniversitv

16

 \geq

Summary

- Thermal conductivity was measured on TPT and TCBs, and obviously TCB showed higher thermal conductivity than TPT.
- ➢ NOCT of TCB used module is 1.2 °C lower than TPT module.
- ➢ G/G module showed 1 °C higher NOCT than TPT module.
- Empirical thermal model using linear regression was developed and validated.
- TCB backsheet contributes to a decrease in the average cell temperature of more than 1 °C in general, and of more than 2 °C on hot sunny days (as high as 5 °C at certain time on hot sunny days).

THANK YOU FOR YOUR ATTENTION

