

1. Introduction

- Sandia thermal model [1], one of the most extensively used models by the industry, predicts the cell temperature of a PV module using a few empirical coefficients and ΔT (temperature difference) between cell and conventional backsheet).
- When the Sandia thermal model was developed before 2004, there were only a few types of polymer backsheet materials available in the marketplace and they were mainly Tedlar based backsheets.
- Due to \$/watt pressure in the current highly competitive market, many module manufacturers have started using non-Tedlar based backsheets.
- We present the empirical coefficients and ΔT for the PV modules containing new types of polymer backsheets and glass substrate.
- These backsheet-specific coefficients and ΔT provide more accurate predicted cell temperatures for the modules.

2. Experimental Setup

> Glass/Polymer Modules

- Glass/EVA/Cell/EVA/Backsheet
- 156mm x 156 mm monocrystalline Si cells
- Polymer backsheet types
- Tedlar-PET-Tedlar (TPT)
- PVDF-PET-EVA
- PA-Aluminum-PET-PA

> Glass/Glass Modules

- Glass/EVA/Cell/EVA/Glass
- 156mm x 156 mm monocrystalline Si cells
- Glass types
- 3.2 mm-thick Solite PV glass

> Module Dimensions

- 1-cell module: 8" x 11"
- 9-cell module: 20.5" x 22"

> Cell and Module temperature

- Cell temperature: T-type thermocouple was attached on the backside of solar cell before lamination. (9-cell module only)
- Module temperature: T-type thermocouple was attached on the backsheet.

> Module Installation and Data Acquisition

- Open rack installation
 - South facing
 - 45° fixed tilt
- Data acquisition system

Arizona State University

- Every 30s interval
- Cell and module temperature
- Weather data
 - POA irradiance, ambient temperature, wind speed, wind direction

Fig. 1. 9-cell module. 'X' marks represent the placement of thermocouples on backside of the cells.

Fig. 2. A photo of 1-cell and 9-cell modules installed at open rack mount for thermal testing at Mesa, Arizona.

Reference

Determination of Sandia Thermal Model Coefficients and ΔT for PV Modules with New Backsheet Types

Jaewon Oh, Ashwini Pavgi, and Govindasamy Tamizhmani Arizona State University Photovoltaic Reliability Laboratory (ASU-PRL), Mesa, AZ 85212, USA

> Temperature coefficients

 Outdoor I-V tracer was used to take multiple I-V curves with respect to temperature. Test modules were stored in air-conditioned box (<20°C) until I-V measurement.

- thermal model coefficient.
- for glass/glass module.
- module, respectively.

Module Operating Temperature by Sandia Model

$$T_m = E^{2}$$

- (°C)
- WS: wind speed (m/s)
- T_{amb}: ambient temperature (°C)
- speeds and high solar irradiance
- speed increases

Fig. 4. ΔT with respect Glass/Polymer (TPT) 9-0 wind speed

- speed.
- shown in Fig. 5.

Temperature coefficients of 9-cell module at 1000 W/m² irradiance

Temperature	l _{sc} (A/°C)	V _{oc} (V/°C)	I _{mp} (A/°C)	V _{mp} (V/°C)	FF (%/°C)	P _{max} (W/°C)
T _m +2.5	0.0063	-0.0206	-0.0006	-0.0232	-0.1812	-0.1825
T _c	0.0057	-0.0188	-0.0002	-0.0214	-0.1658	-0.1667

[1] D. L. King, W. E. Boyson, and J. A. Kratochvil, "Photovoltaic array performance model," Sandia Rep. No. 2004-3535, pp. 1–43, 2004.

3. Sandia Thermal Model Coefficients

 \succ Overall, the coefficient 'a' of all the 1-cell modules obtained at ASU-PRL is practically similar to Sandia

> No coefficient 'a' difference observed between the glass/polymer module and the glass/glass module while King et al [1], reported -3.47 as a coefficient 'a'

 \succ For coefficient 'b', all the values obtained from the modules used in this study are higher (smaller) than Sandia reported values, which are -0.0750 and -0.0594 for glass/polymer module and glass/glass

 $E \times (e^{a+b \times WS}) + T_{amb}$

T_m: module temperature (backsheet temperature)

E: plane of array irradiance (W/m²)

a: empirically-determined coefficient establishing the upper limit for module temperature at low wind

b: empirically-determined coefficient establishing the rate at which module temperature drops as wind

center cell of nine-cell module.

Empirically determined coefficients for various type of backsheets and module configuration

backsheets and module of					
Sample	Module Type				
	Glass/Polymer				
	(PVDF-PET-EVA)				
	Glass/Polymer				
1-cell module	(PA-AI-PET-PA)				
	Glass/Polymer				
	(TPT)				
	Glass/Glass				
	Glass/Polymer				
	(PVDF-PET-EVA)				
9-cell module	Glass/Polymer				
(center cell)	(PA-AI-PET-PA)				
	Glass/Polymer				
	(TPT)				

4. Temperature Difference between Cell and Backsheet (ΔT)

oct 2017 at ASU-PRL)	Sample	Module type	ΔT at 0 m/s WS	ΔT at 1 m/s WS
	1-cell module	Glass/Polymer (PVDF-PET-EVA)	2.6	3.3
<pre>i 0.0042x - 0.2425</pre>		Glass/Polymer (PA-Al-PET-PA)	2.6	3.5
		Glass/Polymer (TPT)	2.7	3.4
		Glass/Glass	2.9	3.7
	9-cell module	Glass/Polymer (PVDF-PET-EVA) Center cell	3.2	3.1
		Glass/Polymer (PVDF-PET-EVA) Corner cell	2.2	2.6
		Glass/Polymer (PVDF-PET-EVA) Edge cell	1.5	2.1
		Glass/Polymer (PA-Al-PET-PA) Center cell	2.5	2.5
		Glass/Polymer (PA-Al-PET-PA) Corner cell	1.9	2.3
		Glass/Polymer (PA-AI-PET-PA) Edge cell	2.1	2.5
		Glass/Polymer (TPT) Center cell	4.0	4.1
		Glass/Polymer (TPT) Corner cell	1.9	2.4
		Glass/Polymer (TPT) Edge cell	2.4	2.8

 $\succ \Delta T$ provided by Sandia is 2-3°C for open-rack mount. $\succ \Delta T$ was center>edge>corner in 9-cell module, and it was as

high as 5.5-5.8 °C at center cell.

 $\succ \Delta T$ could be higher at 1 m/s wind speed than 0 m/s wind

 \succ Due to thermal equilibrium issue, P_{max} could be overestimated when T_m +2.5°C was used rather than T_c as

converted cell temperature (T_m +2.5°C).

Acknowledgements

This material is based upon work supported by the U.S. Department of Energy's the Photovoltaic Research and Development (PVRD) program under Award Number DE-EE0007548.

Fig. 5. P_{max} temperature coefficient using cell temperature, module temperature and