

Exceptional service in the national interest

Determining Coefficients for the Sandia Array Performance Model

2nd PV System Modeling Workshop

May 1, 2013 *Clifford Hansen and Daniel Riley* Sandia National Laboratories, New Mexico (USA)

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Outline and Summary

- Sandia Array Performance Model
 - Predicts on-sun module performance with good accuracy
- Calibration using outdoor testing
 - Proven techniques, but,
 - Testing can take weeks
 - Documentation is lacking
- Calibration using indoor testing:
 - Proof of concept presented at 38th PVSC
 - Independently, D. King arrived at a similar approach
 - Cut turnaround time for module testing from weeks to hours
 - Predictions of on-sun module performance show similar accuracy
 - However, not all coefficients can be estimated using indoor testing

The Sandia Array Performance Model

- Describes module output at SC, OC and MP points
- As a function of beam and diffuse irradiance (E_b and E_{diff}), cell temperature (T_c), air mass (AM_a) and angle of incidence (AOI)
- 14 empirical coefficients, 2 empirical functions (f_1 and f_2)
- With exception of f₂, coefficients determined for individual modules

$$V_{OC} = V_{OC0} + N_{S} n \delta(T_{C}) \ln(E_{e}) + \beta_{OC} (T_{C} - T_{0})$$

$$V_{MP} = V_{MP0} + C_{2} N_{S} n \delta(T_{C}) \ln(E_{e}) + C_{3} N_{S} (n \delta(T_{C}) \ln(E_{e}))^{2} + \beta_{MP} (T_{C} - T_{0})$$

$$I_{SC} = I_{SC0} f_{1} (AM_{a}) E_{e} (1 + \alpha_{SC} (T_{C} - T_{0}))$$

$$I_{MP} = I_{MP0} (C_{0} E_{e} + C_{1} E_{e}^{2}) (1 + \alpha_{MP} (T_{C} - T_{0}))$$

$$E_{e} = E_{b} f_{2} (AOI) + E_{diff} f_{d}$$

SAPM calibrated by Outdoor Testing

- I-V curves measured on 2-axis tracker during three sequential tests:
 - Thermal performance
 - Electrical performance
 - Incident angle
- Can take several weeks to obtain I-V curves during all important conditions

Example of parameter estimation

 $E_e \approx 1$

- Estimate temperature coefficient for VOC from thermal performance test
 - Maintain AOI = 0
 - Clear-sky conditions

$$V_{OC} = V_{OC0} + N_S n \delta(T_C) \ln(E_e) + \beta_{OC} (T_C - T_0)$$

\$\U0073 simplifies to

$$V_{OC} = V_{OC0} + \beta_{OC} \left(T_C - T_0 \right)$$

- Cover module and cool to ambient
- Uncover and measure I-V curves while module heats to operating temperature
- Normalize measured V_{OC} to 1000 W/m²
- β_{OC} estimated from (T_C , V_{OC}) by linear regression

Sandia

Performance of "outdoor" model

- One SunPower 305W cSi module
- Albuquerque, NM, in March 2012
- "In sample" model verification

Sandia

National

Indoor testing (reported at 38th PVSC)

- Conducted by CFV Solar Test Laboratory, Inc (Albuquerque, NM)
- HALM solar simulator integrated with a thermal chamber
 - Varies irradiance between 0.1 and 1.1 suns
 - Temperature between 25C and 75C via laminar air flow heater
- We measured I-V curves for irradiance and temperature combinations following IEC 61853-1

Parameters from indoor testing

- IEC 61853 test matrix
- Two-stage process analogous to outdoor test methods
 - Estimate thermal coefficients, then
 - Use thermal coefficients in estimation of other parameters
- Other methods (e.g., full simultaneous) performed worse
- D. King independently arrived at similar approach

Performance of "indoor" model

 Parameter values obtained are similar for outdoor and indoor models

Parameter	Outdoor Model	Indoor Model
β_{OC} (V/°C)	-0.195	-0.197
V_{OC0} (V)	65.044	64.882
β_{MP} (V/°C)	-0.183	-0.184
V_{MP0} (V)	54.193	54.15
α_{MP} (1/°C)	-0.00017	-0.000169
I_{MP0} (A)	5.623	5.631
α_{sc} (1/°C)	0.000425	0.000378
I_{SC0} (A)	5.976	5.969
<i>n</i> (unitless)	1.12	1.074
$C_0; C_1$ (unitless)	1.0121; -0.0121	1.0069; -0.0069
$C_2; C_3$ (unitless)	0.3114; -5.0257	0.3379; -4.7201
N_s (cells in series)	96	96

Similar accuracy predicting outdoor performance

Conclusions, and Future Work

For outdoor testing:

- Testing and parameter estimation methods have proven reliable but should be better documented
- For indoor testing:
 - Most (but not all) parameters for SAPM can be determined from indoor testing if irradiance and module temperature can be varied separately
 - Currently, we cannot determine f1 or f2 from indoor measurements
 - Using surrogate f2 function from analog modules has been acceptable
 - Methods need better documentation

Available references

Sandia Array Performance Model

 King et al. 2004, Photovoltaic Array Performance Model, Sandia Report 2004-3535

Generating coefficients for SAPM

- Hansen et al. 2011 PVSC Paper, Parameter Uncertainty in the Sandia Array Performance Model for Flat-Plate Crystaline Silicon Modules
- Hansen et al. 2012 PVSC Paper, Calibration of the Sandia Array Performance Model Using Indoor Measurements

Copies available at <u>pv.sandia.gov</u>, PV Publications page