

DRIVE and PowerClerk Interface Tool to Expedite DER Interconnection Screening Process

Nick Heine Engineer II, System Studies Group, EPRI

> PV Symposium Albuquerque, NM; May 3rd, 2018

Agenda

Motivation

PowerClerk – Clean Power

Research

- DRIVE EPRI
- Hosting Capacity
- Example Process

- The number of interconnection applications continues to rise
- Fast-track screening methods (15% rule) can be conservative or inaccurate
- Detailed impact studies require valuable time and resources

Project Task: Develop a platform to interface CPR's PowerClerk and EPRI's DRIVE tools to expedite the DER Interconnection screening process.

DOE RFP Objective: Reduce processing time to less than 1 week and cost to less than \$1000 per application

Interconnection Application Management

- Homegrown or Commercial Product
- Public facing (web based/accessable)
- Inform developers
- Accommodate DER portfolios
- Integrate planning and billing tools
- Automate screening practices
- Access application data

Automating energy programs covering a broad range of DERs

- Over 40 electric utilities managing DER interconnection and incentives
- Enterprise-grade platform providing:
 - Flexible end-to-end form-driven workflow
 - Data accessibility
 - Integration across existing systems

EPRI partnered with Clean Power Research for the DOE SHINES project, but the process is applicable to any Interconnection Application Management system

© 2018 Clean Power Research

Primary Functionality of DRIVE

- Calculating hosting capacity

Hosting Capacity is the amount of DER that can be accommodated without adversely impacting power quality or reliability under current configurations and without requiring infrastructure upgrades.

Applications of DRIVE

Hosting Capacity:

- Enable DER planning
- Inform developers
- Assist interconnection screening
- Assist operational dispatch

Bridging the Gap in Distribution Planning

Detailed Analysis –

use of power system analysis software to understand DG and solar impacts based on stochastic analysis (extensive model-based analysis)

 Interconnection Screens – such as in FERC SGIP fast-track screening or in CA rule 21 screening procedures (limited model-based analysis)

Detailed

Analysis

Accuracy

Automated Interconnection Screening with DRIVE

Automated Interconnection Screening with DRIVE

Automated Interconnection Screening DRIVE

ELECTRIC POWER

RESEARCH INSTITUTE

Example Application Screening

Two 13.2 kV distribution feeders

Example with 13.2 kV Test Circuits Step 1: An interconnection application is filed

ELECTRIC POWER RESEARCH INSTITUTE	Welcome, Nicholas Heine Log out
IE PROGRAM DESIGN ▼ ADMIN ▼ SETTINGS ▼	SUPPORT
DG Interconnection Application	
Service Location Lookup Type *	
Street Address	
Customer/Facility Information	
Test Demo	Must be able to
Company	map physical
Company	
Address *	location or account
123 Test Ave	number to a circuit
	and node
City Zip Code	
Email	
Email Address	
Phone	

Example with 13.2 kV Test Circuits A utility administrator flags the project for review with DRIVE

	Welcome, Nicholas Heine Log out
HOME PROGRAM DESIGN 🔻 ADMIN 🔻 SETTINGS 💌	SUPPORT
Admin: EPRI-00004 Go To View/Edit	Go to EPRI- Go
Current Status	
Change status to: DRIVE Analysis Requested Save	Cancel
Project Notes	
This project has no notes.	Add Note
Attachments	
Upload Description Silename Timestamp	Note
No attachments	
Add attachment	
Communications	
Communications History	
Date 🔷 Description	🛷 Status 🛷
No sent communications	

Example with 13.2 kV Test Circuits DRIVE Web Service finds the project in the Analysis Queue

EPEI ELECTRIC POWER RESEARCH INSTITUTE Welcome, Nicholas Heine Log Out										
IOME PRO	OGRAM DESIGN 🔻	ADMIN 🔻	SETTING	s 🔻						SUPPORT
ELECTRIC P	POWER RESEAR	CH INSTIT	TUTE - INT	ERCON	NECTION	I - GREAT	TER THAN 50	KW	Chan	ige Program
New Pre-Appl	lication Report Reque	est New Int	terconnectior	Applicatio	on >50kW					
All Projects Projects in C	Cancelled/With	drawn A IVE Analysis (Applications R Queue	eview Que	eue Cor	npleted Pro	jects Supplen	nental Review	w Queue	
										Q
Queue Position	Project Developer #	Current 💸 Status	Current Status 🛷 Timestamp	Account Number		Host Customer Last	Customer/Facility Line 1	Host Customer Zip Code	Total Generator Nameplate Capacity (AC-kW)	Assignee
1	EPRI- 00004	DRIVE Analysis Requested	01/29/2018		Test	Demo	123 Test Ave	37914	60	[No Assignee]
Queue Position	Project Developer #	Current Status	Current Status Timestamp	Account Number		Host Customer Last	Customer/Facility Line 1	Host Customer Zip Code	Total Generator Nameplate Capacity (AC-kW)	Assignee
										1

Web Service requests the project data with PowerClerk API method

	Field
	Project ID
	Customer ID
	Status ID
Web Service	Transformer
will get DRIVE	Circuit
files for the	Segment
identified Circuit	Annual kWh usage
	DG Energy Source (biogas, CHP, fuel cells, hydro, solar, or other)
	Generator Type (Inverter, induction, synchronous)
	Total Generator Nameplate (kW-AC)
	PV System, if energy source is solar
	Generator connection (Delta, Wye, or wye grounded)
	Phase (Single-phase or three-phase)
	New or addition

Web Service requests other same-circuit projects and data

Same-circuit projects can have a variety of statuses, including: under review, permission to construct, permission to operate, etc. with time stamp prior to current project

Web Service incorporates pertinent project data into DRIVE input files

Fie	ld		
Pr	Fie	ld	
Cu	Pro	Fie	ld
Sta	Cu	Pro	Field
Tri	Sta	Cu	Project ID
Cir	Tra	Sta	Customer ID
Se		Tra	<u>Status ID</u>
An		Cir	<u>Transformer</u>
DC			Circuit
Ge		An	<u>Segment</u>
То	Ge	DG	Annual kWh usage
PV	Tot	Ge	DG Energy Source (biogas, CHP, fuel cells, hydro, solar, or other)
Ge	PV	Tot	Generator Type (Inverter, induction, synchronous)
Ph	Ge		Total Generator Nameplate (kW-AC)
Ne	Ph	Ge	PV System, if energy source is solar
	Ne	Ph	Generator connection (Delta, Wye, or wye grounded)
		Ne	Phase (Single-phase or three-phase)
			New or addition

16

Web Service executes hosting capacity analysis for project under review

The project under review and all other same-circuit projects are incorporated into DRIVE input files and considered 'Existing DERs' in the analysis

Example with 13.2 kV Test Circuits Web Service interprets hosting capacity summary results Impacts Considered

- Voltage
 - Primary overvoltage
 - Primary voltage change
 - LTC/Regulator tapping
- Thermal
 - Feeder Level
 - Substation Level
- Protection
 - Element fault current
 - Breaker relay reduction of reach
 - Sympathetic breaker relay tripping
 - Reverse power flow
 - Unintentional islanding
 - 3V0
 - Operational Flexibility

Pass/Fail is determined by the remaining hosting capacity of the circuit

The utility can define Hosting Capacity by the impacts considered

Web Service submits DRIVE results with PowerClerk API method

	HOME ELEC	TRIC POWE	DESIGN - ADMI	N ▼ SETTINGS ▼ STITUTE - INTERC w Interconnection Appli			ATER THAN 50	Welcome,	Power Nicholas Heir Cha			
Submitting results updates the project status	Proj	Project Do #		Applications Review ysis Queue Current Account Status Number Timestamp	Host	Host Last	Customer/Facility	Host Customer Zip Code	Total Generator Nameplate Capacity (AC-kW)	Q Assignee		
	٥	EPRI- 00006	Application Under Review	01/29/2018	Test	Demo	234 Demo Blvd	37914	150	[No Assignee]		
	٢	EPRI- 00005	Application Under Review	01/29/2018 12345						ed analys		
	٢	EPRI- 00004	DRIVE Analysis Results	01/29/2018	Test	Demo	123 Test Ave	37914		automa	ited appro	DVa

Next Steps

	2018	2018										
	J	F	М	А	Μ	J	J	А	S	0	N	D
Software Development				7								
Testing and Use Cases												
Reporting												

Together...Shaping the Future of Electricity

