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Project Highlights
• Goal –

• Quantify the contribution PV monitoring systems have in terms of LCOE
• Method-

• Two PV systems in geographical different areas will be used to investigate 
power loss events and validate algorithms that can detect those losses

• Implement those algorithms into a supervisory monitoring system
• Propagate those algorithms to a utility scale field and determine their success 

rate in that arena
• Outcome –

• Comparative results between new algorithms and existing algorithms
• Improved understanding and contribution to PV’s body of knowledge
• Provide meaningful inputs to the LCOE models that account for PV system 

monitoring costs
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Today’s topic – Experimental Methods
• Method-
• Two PV systems in geographical different areas will be used to 

investigate power loss events and validate algorithms that can detect 
those losses
• Soiling
• Cell cracks
• Within module interconnection failures
• Between module interconnection failures
• Shading

• Creating the data set
• Developing experimental methods to create the defects that will generate 

the fault
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Experimental Methods
• Developing experimental methods to create the defects that will 

generate the fault
• Soiling
• Cell cracks
• Within module interconnection failures
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Soiling Experimental Method



Soiling Experimental Method
• Objective
• Develop a simple, quick method to emulate soiling signature

• Provide data set characteristic of soiling
• Reduced current
• Change in Vmp, Imp, Pmp, Isc

• Use soiling method to generate data sets
• Power loss detection
• Root cause based on PV characteristics

• Not characterizing soil, types of soil, etc.
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Soiling Characteristics
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• Typical characteristics of soiling
• As reported in literature

• Reduced current (Isc, Imp)
• Reduced power (soiling ratio)

Reference: Christian Schill, Stefan Brachmann, Michael Koehl, 
Impact of soiling on IV-curves and efficiency of PV-modules, 
Solar Energy, Volume 112, 2015, Pages 259-262.

Ref: M. Gostein, J. R. Caron and B. Littmann, "Measuring soiling losses 
at utility-scale PV power plants," 2014 IEEE 40th Photovoltaic Specialist 
Conference (PVSC), Denver, CO, 2014, pp. 0885-0890.



Soiling Characteristics – our method
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• Indoor flash tester
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Soiling Characteristics – our method
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• Outdoor IV tracer
• In situ configuration

String level tracer
string 1
string 2

Module level tracer
4 of 24 modules

Before ‘Soiling’ After ‘Soiling’



‘Soil’ = Transparent 
film
• Nearly transparent film

• Linear low-density polyethylene
• Apply over module to emulate soiling

• Characterize properties
• Viability test

• Indoor electrical performance impact
• Optical properties

• Transmittance
• Various angles of incidence

• Aging characteristics
• Field Test
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Viable
• Flash test

• Sinton FMT-350
• Apply film to module 

• 1st layer
• Indoor flash test

• 7.7 % drop in Isc
• 9.39 A to 8.67 A

• 8.1 % Power loss
• 272 W to 250 W

• 2nd layer
• Indoor flash test

• 15.0 % drop in Isc
• 9.39 A to 7.98 A

• 15.4 % Power loss
• 272 W to 230 W
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Optical properties
• Characterization
• Shimadzu UV-2401PC

• IV-VIS recording spectrophotometer

• Investigated two film thicknesses
• 39 micrometer (μm)
• 65 micrometer (μm)

• Transmittance (%T)
• Wide range of incident angles

• Normal ± 60° (30° to 150° with 90° being normal)
• Influence of outdoor exposure

• 4.67 kWh/m2 of  UV (295 nm to 385 nm) 
13



Transmission characteristics

• % Transmission
• Wavelength scan

• 250 nm to 1000 nm
• Shows drop in %T

• Range of incident angles 
• (90 ° = normal)

• Drops significantly >40° from normal

• External Quantum Efficiency (EQE)
• Included as reference to 

wavelengths of interest
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% Transmission – Wavelength and Incident Angle

• Shows the %T by
• Incident angle (x axis)
• Wavelength (family of curves)

• Shorter wavelength, %T drops
• < 400 nm

• Larger incident angle, %T drops
• > 40° from normal
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% Transmission, Outdoor exposure
• Polymer films susceptible to UV 
• Measure UV with Eppley TUV

• Wavelength range:
• 295 nm to 385 nm

• Exposure
• None
• 1st Exposure (September, 2018)

• 1.53 kWh/m2 (7 days, Cocoa, FL)
• 2nd Exposure (September+, 2018)

• 4.65 kWh/m2 (33 days, Cocoa, FL)

• %T drops with exposure
• 4% less transmission after a month
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‘Soiling’ Take away
• Linear low-density polyethylene
• Provides characteristic signature of soiling  
• Single layer covering shifts PV performance ~8%

• Relatively fast degradation could be used as advantage when 
testing algorithms
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Cell Cracks Experimental Method



Cell Cracks Experimental Method
•Objective
• Develop a simple, quick method to generate cell 

cracks in modules
• Provide data set characteristic of cell cracks in modules
• Power loss, voltage change

•Use modules with cracks to generate data sets
• Power loss detection
• Root cause based on PV characteristics
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LoadSpot mechanical load test

• Mechanical load test
• Open face allows

• Flash test under load
• EL under load

• Chamber behind module
• Pressurized
• Vacuum

• Programmatically apply load
• IEC standard
• Develop new methods
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Schneller, Gabor, Lincoln, et al 
(2017). Evaluating Solar Cell Fracture 
as a Function of Module Mechanical 
Loading Conditions.



Experimental plan
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Time period Activity

Week 1-3 Light soak 4 modules, EL/IV before & after

Week 4 Crack initiation, Load modules @ 2400Pa (1 day)
Add the modules to the string and monitor

Week 5
Remove and return modules to the lab
Load modules @ 5400Pa, EL/IV before & after. (1 day)
Add the modules to the string and monitor

Week 6 Remove and return modules to the lab
1000 Cycles @±1000Pa on same 4 modules (4 ½ days)

Week 7 Add the modules to the string and monitor

Week 8 Remove and return modules to the lab
1000 Cycles @±2400Pa on same 4 modules (4 ½ days)

Week 9 Add the modules to the string and monitor
Week 10 Remove and return the modules to the lab



Crack Initiation
• Expose PV modules to extremely cold temperatures 
• (–40°C per IEC standard) to create microcracks / weaknesses
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Insulated box with Dry Ice Cover until -40°C



Mechanical load after crack initiation
• Load modules @ 2400Pa
• Applied to 4 modules
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Mechanical load after crack initiation

• Load modules @ 2400Pa
• Applied to 4 modules
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Install Cracked Modules in PV system
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• Modules location in String
• 13, 18, 19, 24

• Module voltages (low to 
high)
• 13 < 18 < 19 < 24

String 2 (west ), module ID

19 20 21 22 23 24

18 17 16 15 14 13



IV traces
• String 1 and String 2
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• Modules in String 2

• Too early to tell, more analysis, more cracks 



Cell Crack Take away
• Method developed to provide cell cracks in 

modules
• Study will test impact of cracks on PV parameters
• Sequential mechanical loading experiment
• Provide PV parameter changes with crack severity

• First round just completed
• Nothing conclusive
• More cracks, more testing 
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Interconnection Failure Experimental Method



Interconnection Failure Experimental 
Method
•Objective
• Develop a simple, quick method to generate 

interconnection fault within the modules
• Provide data set characteristic of modules interconnection failures

•Use modules with interconnection fault to generate 
data sets
• Power loss detection
• Root cause based on PV characteristics
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Interconnection failure
• Open path at busbar

• Examples in literature
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Reference: [1] M. Köntges, S. Kurtz, C. Packard, U. Jahn, K. A. Berger, and K. Kato, Performance and reliability of 
photovoltaic systems: subtask 3.2: Review of failures of photovoltaic modules: IEA PVPS task 13: external final report 
IEA-PVPS. Sankt Ursen: International Energy Agency, Photovoltaic Power Systems Programme, 2014.



Interconnection failure using mechanical 
load
• Mechanical load test
• Sequence intended to

• stress ribbon 
• not the cell

• : ± 2000Pa @ 8.6 sec/cycle
• Periodically capture EL
• Test to interconnection failure detected

• Today’s modules are robust
• 1 interconnection failure detected after 

50,000 cycles
• A few cracked cells introduced
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Schneller, Gabor, Lincoln, et al 
(2017). Evaluating Solar Cell Fracture 
as a Function of Module Mechanical 
Loading Conditions.



Interconnection fault
• Stepped back and looked at objective
• Develop a simple, quick method to generate interconnection fault 

within the modules
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Interconnection fault
• Stepped back and looked at objective
• Develop a simple, quick method to generate interconnection fault 

within the modules
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Light table to see interconnection

Dremel® with cutting 
wheel fixture

Cover opening with Kapton® tape, 
double layer

Interconnection break visible at front



Module - Electroluminescence
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Prior cut

Post cuts

Dark regions align with 
interconnection break
• 4 interconnections 

cut
• 1 bus bar per location



Charging forward –



Experimental Methods
• Developed experimental methods to create the defects that will 

generate the fault
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Soiling
• Polymer cover

Cell cracks
• Mechanical load

Interconnection failures
• Mechanical abrasion
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