Field Performance of **Bifacial PV Modules** and Systems

PV Module Technology & **Applications Forum 2018**

Cologne, Germany 30 January 2018

<u>**Clifford Hansen**</u>¹, Joshua Stein¹, Dan Riley¹, Matthew Lave¹, Chris Deline², Fatima Toor³

¹Sandia National Laboratories ²National Renewable Energy Laboratory ³University Of Iowa

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525..

Exceptional service in the national interest

SAND2018-1084 C

3-Yr Bifacial Research Project (FY16-18)

Collaborative project between Sandia, NREL and University of Iowa (https://pvpmc.sandia.gov/pv-research/bifacial-pv-project/)

Task 1: Measure Outdoor Bifacial Performance

- Module, string and system scale
 - Adjustable rack with 4 modules
 - Fixed tilt racking with varying tilt and azimuth
 - Single axis and two-axis trackers
 - Arid sunny (NM and NV) and cold snowy climates (VT)
 - Irradiance measurements (rear-facing, spatial)
- Quantify
 - Performance of mono- and bifacial modules in similar deployments
 - Bifacial gain see next slide
 - Spatial variability in backside irradiance
 - Effects of backside obstructions and shading

3-Yr Bifacial Research Project (FY16-18)

Task 2: Develop Performance Models

- Irradiance modeling
 - Ray tracing methods Sensitivity studies
 - View (Configuration) Factor methods
 : 2D for conventional arrays, 3D for cell-by-cell irradiance
- Module performance models

Task 3: Support Rating Standards

Support new bifacial rating standard (IEC 60904-1-2 - Draft)

Publications at

https://pvpmc.sandia.gov/pv-research/bifacial-pvproject/

Time-O ns Ray	trajectories
dA ₂ B_2 B_1 A_1 A_1 A_1 A_1 A_2 A_1 A_2 A_1 A_2 A_1 A_2 A_1 A_2 A_3 A_1 A_2 A_3 A_2 A_3 A_3 A_4 A_1 A_2 A_3 A_4 A_1 A_2 A_3 A_3 A_4 A_1 A_3 A_3 A_4 A_3 A_4 A_3 A_4 A_3 A_4 A_3 A_4 A_3 A_4 A_3 A_4 A_3 A_4 A_3 A_4 A_3 A_4 A_3 A_4 A_3 A_4 A_3 A_4 A_3 A_4 A_3 A_4 A_3 A_4 A_4 A_5 A_4 A_5 A_4 A_5 A	$\frac{1}{6}$
<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	

130

Measuring Bifacial System Performance

- We compare bifacial modules to similar monofacial modules in the same mounting and orientation (e.g., fixed tilt, south-facing) using bifacial gain BG
 - $E_{bifacial}/E_{monofacial} = 1 + BG$
- Normalize power by rated capacity to compare between systems

•
$$BG = \frac{\sum P_{bifacial}(t) / PO_{bifacial}}{\sum P_{monofacial}(t) / PO_{monofacial}} - 1$$

- BG varies with system, time of day and season due to:
 - Bifacial ratio (back/front module rating) : depends on cell technology and module design (>90%, >80%, >60%, ~35%)
 - Rear-surface irradiance (mostly ground reflected irradiance) is not proportional to front-side plane-of-array irradiance
 - Albedo ground cover, can change with time of day and season
 - Shadows on the ground from nearby objects, moderated by elevating the bifacial array
 - Nearby obstructions (e.g., racking)
 - Power is not always proportional to total irradiance
 - Mismatch effects from spatially variable rear-surface irradiance

Prism Solar Modules in NM, NV and VT

New Mexico

Measured Albedo

- Natural = 0.2 0.3
- White = 0.5 0.6

Nevada

Measured Albedo

- Natural = 0.2
- White = 0.3

Vermont – summer

Measured Albedo

- Natural = 0.1 (Summer)
- White = 0.2 (Summer)
- Winter = ??

Vermont – winter (awaiting data)

Comparison of annual energy (NM, NV)

BG varies significantly by time of day

BG vs. weather condition

Monthly energy for Prism modules (NM)

BG relatively stable over seasons, except for vertical orientation

South and west tilted systems

Vertical oriented systems

Small-system Performance

Four fixed-tilt String-level Arrays

- Four rows at 15°, 25°, 35°, and 45° tilt.
- Each row has one bifacial and one monofacial string of 8 modules.
- Modules alternate to minimize backside spatial irradiance bias.
- Bifacial: Prism Solar (n-Type c-SI) : Rb ~93%
- Bifacial: SunPreme (HJT/HIT) : Rb ~95%
- Monofacial: SolarWorld

- BG less for system than for single modules
- BG increases with increasing tilt

Data from June 1 – Aug 31, 2017 10

Bifacial on Single Axis Tracker (NM)

- Daily *Potential* Bifacial Energy Gains were estimated from front and back irradiance data using reference cells.
- Potential gains increase when tracker is off-track, but energy decreases

Bifacial on 2-Axis Trackers (VT)

- Two 2-axis trackers each have two strings (one of monofacial and one of bifacial)
- Significant obstructions behind bifacial modules from tracker rack

Performance advantage during snow:

- Rear side is generally clear
- Promotes shelf-shedding
- Not always but trend appears

1 Jan 2018

Conclusions

Bifacial performance always exceeds monofacial performance in the same orientation

- 10% seems to be a floor value for Bifacial gain (for a bifacial module with Rb ~ 93%)
- Bifacial advantage (measured by BG) increases substantially when monofacial modules are not optimally deployed
- Extreme example: vertical, E-W bifacial modules have similar yield as latitude tilt, southward monofacial modules

However

- Bifacial advantage decreases from single modules (BG ~20%) to systems (BG ~12-15%) due to shading of nearby ground from the modules themselves
- Bifacial gain (BG) is not an ideal metric
 - LCOE may be more meaningful for two systems each designed to optimize yield within the same constraints (area, budget, obstructions)
- Optimizing bifacial yield will require careful attention to Balance of System effects such as shadows from racking

Questions?

Clifford W. Hansen <u>cwhanse@sandia.gov</u> Joshua S. Stein <u>jsstein@sandia.gov</u>