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Finite element modeling: Overview and applications

* Finite element method is a numerical method for solving complex engineering
problems by discretizing a domain into many small elements

« Familiar tool in many engineering fields:
» Computational fluid dynamics (CFD), heat transfer, structural mechanics &
dynamics- among others

Structural mechanics
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Coupled CFD and chemical kinetics Structural dynamics

Sandia maintains world-class computational capabilities and codes through the
Advanced Simulation and Computing (ASC) program



41 Finite element modeling and photovoltaics

* Many applications for finite element models in the photovoltaics space
« This presentation will focus on how modeling can be used to address
phenomena which may result in degradation:

RN

" Boris Jerman

David DeGraaff

Coupled effects: Moisture ingress +
temperature + mechanical stress ...

’

Mechanical damage

ohn Wohlgemuth

This work is funded by the Durable Module Materials Consortium (DuraMAT), part of a US Department of Energy (DOE)
Energy Materials Network (EMN)



5 1 Module level model development

* Currently, we have developed full module mechanical + thermal models
« This takes into account many input parameters:
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s | Module level model applications

* Main application is analysis of environments- What stresses occur during:
« Manufacture (Residual thermal stress, joint preloads)
« Transportation/installation (Uneven or concentrated loading)
» Deployment exposures (Wind pressure, thermal cycling)
* Modeling the effect of these exposures enables the causes of degradation to
be understood

Detailed view:
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71 Module level model validation

» To be utilized with full confidence, model validation must be performed

* Process of confirming model predictions against a known, measurable loading
scenario- prior to extension into non-measured scenarios ‘

» For small deflections and linear, elastic material behavior, comparison of deflection
vs. load is useful- uniform pressure load used as a test case I
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s | Component level models and applications

« Component level models focusing on interconnects, solder joints, cells have
been developed- degradation typically occurs at these discrete locations within
a module

 Utilizes full scale model to inform boundary conditions
« Validation to be accomplished by deflection vs. load comparisons also

Stress contour plot at +85°C

Meng et al. 2017
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9 | Component level models and applications

« Parametric capability is a key application for simulations

e Hundreds to thousands of simulations can be run: Possible to derive
statistical correlations between parameters

« Example design questions: Will switching to encapsulant A cause more
stress than encapsulant B? If the modulus of glass is not well known, how

much effect could it have on deflection?

Table |: Varied Design Parameters
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and compared..
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...Each set populates a simulation

“Effects of Solar Cell Materials and Geometries on Thermally Induced Interfacial Stresses.”
James Y. Hartley; Scott Roberts. 45th IEEE PVSC Conference. Waikoloa, HI. June 10-15, 2018.
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101 Current related modeling efforts

« Some current efforts extending from module- and component-level modeling:

0 Table |: Varied Design Parameters
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11 1 Future modeling efforts

« Physics which may be added to the finite element models:
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12 I Summary and Conclusions

» Finite element modeling as applied to photovoltaic modules have a large
application space including:

* Module and cell design evaluation
» Assessment of environmental effects
« Evaluation of accelerated stress test protocols

» Development of module- and component-level models is in progress
under the DuraMAT program

 The end goal is a predictive tool useful for capturing the physical
phenomena affecting module lifetime

« Open research areas include characterizing and implementing:
« Advanced material models

» Coupled physical effects- electrical-thermal behavior, moisture,
and potentially many more

* Questions and comments?




