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Case studies vs. fleet analysis
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Case Study Fleet analysis

Detailed analysis on a 
small number of 
systems

Trends in large numbers of systems



A Tale of Two Systems

Challenges with fleet scale analysis
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Comparison of two systems
System 1: Research system at NREL

maps.nrel.gov/pvdaq
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Comparison of two systems

www.solrenview.com/SolrenView/mainFr.php?siteId=726

System 2: Elementary School in Connecticut
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Comparison of two systems

• Metadata:
– Location
– System orientation
– Module details
– Inverter details

• Time series:
– 1-minute
– AC power/current/voltage
– DC power/current/voltage
– Ambient temperature
– Inverter temperature
– 3 module temperatures
– Plane-of-array irradiance
– DAS diagnostics

• Metadata:
– Location
– Module details
– Inverter details

• Time series:
– 5-minute
– AC power/current/voltage
– DC voltage

Research system Elementary school
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• Metadata:
– Location
– System orientation
– Module details
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• Time series:
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Goal: 
Robust analytics that enable comparisons 
between data sets from disparate systems
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Analysis Framework

Normalize to model Filter Aggregate Normalized
daily yield

• First three steps (above) give a normalized daily yield
• Analyze the normalized yield for soiling and degradation

• Utilize robust calculations
• Pay attention to the uncertainty in the results

• Enabled by open source python library: RdTools (nrel.gov/pv/rdtools.html)

High-frequency 
performance data

https://www.nrel.gov/pv/rdtools.html


Degradation analysis
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Year-on-year degradation analysis

• Year-on-year is robust to seasonality 
and outliers

• Steps:
• Compare each day (or week, month, etc.) 

to its corresponding day a year later
• Calculate the median of all year-on-year 

slopes
• Pay attention to the confidence interval

E. Hasselbrink, M. Anderson, Z. Defreitas, et al., “Validation of the PVLife model using 3 million module- years of live 
site data,” PVSC, p.0007, 2013
Jordan, Deceglie, & Kurtz. "PV degradation methodology comparison—A basis for a standard."  PVSC, p.0273, 2016

Extracted
degradation
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Year-on-year is robust

• Example: intentionally induced seasonality 
• Results remain consistent
• Confidence interval appropriately expands
• A very detailed performance model isn’t needed

Original model Doubled  temperature coefficient

P50 Rd: -2.2 %/year 
Conf. Int.: –2.5 to –1.8 %/year

P50 Rd: -1.9 %/year 
Conf. Int.: –2.5 to –1.3 %/year
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Cumulative distribution functions (CDFs)

CDFs provide a way to visualize 
distributions, independent of bin 
size
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CDFs with individual confidence intervals

single measurement
95% confidence interval

Every measurement on the CDF has its own uncertainty
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CDFs with individual confidence intervals

We can include each measurement's 95% confidence 
interval on the plot
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Uncertainty in the distribution

Sample
Monte Carlo

• Monte Carlo to include the effect of individual CIs on full distribution
• Resample the data (with replacement) within the individual confidence 

intervals many times
• CDF of this Monte Carlo resampling follows the original closely
• For fleet-scale studies, we can sacrifice some site-level precision
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Example: residential vs. non-residential

• Analyzed 634 subarrays from 503 PV systems in 
the United States

• 387 residential systems
• 116 larger, non-residential systems
• Negative rate of change = degradation (-1%/year 

indicated)
• Residential systems tended to degrade more 

rapidly
• 29% of residential and 38% of non-residential 

systems degraded slower than -0.5%/year

Deceglie et al. IEEE JPV 9(2), pp. 476–482, 2019



Soiling analysis

Stochastic rate and recovery (SRR)



NREL    |    18

Step 1: Detect soiling intervals 
Stochastic rate and recovery (SRR) soiling analysis
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yield (blue dots)
• Use rolling median (black line) 

to detect positive steps, 
interpreted as cleaning events 
(dashed lines)

Soiling interval

Deceglie et al. IEEE JPV 8(2), pp. 547-551, 2018 
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Step 2: Fit each soiling interval
Stochastic rate and recovery (SRR) soiling analysis

Theil-Sen fit to single soiling interval

• Fit each interval identified in step 1 
with the Theil-Sen method

• Median of point-to-point slopes
• Robust to outliers

• Keep track of the slopes, intercepts 
and uncertaintyNo
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Deceglie et al. IEEE JPV 8(2), pp. 547-551, 2018 
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Step 3: Monte Carlo of possible profiles
Stochastic rate and recovery (SRR) soiling analysis
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Monte Carlo realizations (orange)  of possible soiling profiles

Generate possible soiling profiles 
from the slopes, uncertainties, 
and recoveries extracted for each 
interval

Deceglie et al. IEEE JPV 8(2), pp. 547-551, 2018 
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Final step: calculate soiling loss
N

or
m

al
ize

d 
yi

el
d

Extract soiling interval statistics

Extract total 
soiling losses

Analyze Monte Carlo realizations and 
interval fits:
• Insolation-weighted average soiling ratio
• Statistics of each soiling interval (e.g. 

soiling rate)

Deceglie et al. IEEE JPV 8(2), pp. 547-551, 2018 

Stochastic rate and recovery (SRR) soiling analysis
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Soiling analysis: validation

• Applied calculations to the clean 
module in a soiling station

• Outperformed fixed soiling rate 
models

• Bias is likely in the station soiling 
ratio, due to co-soiling of modules 
between cleaning

Station soiling loss
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Deceglie et al. IEEE JPV 8(2), pp. 547-551, 2018 
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Analysis workflow

Model

PV Data

Weather data

normalize, filter, aggregate Daily normalized yield
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All this is available in RdTools

• Read me and examples: https://github.com/NREL/rdtools
• Install: pip install rdtools

Note: soiling methods 
are currently in the 
development branch

https://github.com/NREL/rdtools
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Opportunity to work together

https://www.energy.gov/eere/solar/downloads/photovol
taic-fleet-performance-data-initiative
Contacts: Tassos.Golnas@ee.doe.gov and 
Inna.Kozinsky@ee.doe.gov

https://www.nrel.gov/careers/find-
job.html

Learn about your fleet’s performance or come 
help with the analysis!

https://www.energy.gov/eere/solar/downloads/photovoltaic-fleet-performance-data-initiative
https://www.nrel.gov/careers/find-job.html
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Conclusion
• Fleet-scale analysis enabled by open-source RdTools elucidates system degradation and soiling trends
• Challenges with soiling and drifting sensors

• Clearsky detection and filtering: 
• Jordan et al. JPV 8(2) pp. 525–531
• Ellis et al. “Automatic Detection of Clear-sky Periods From Irradiance Data” JPV (in press)

• Soiled sensors :  
• DeFreitas et al. “Evaluating the Accuracy of Various Irradiance Models in Detecting Soiling of 

Irradiance Sensors” PVSC 2019 (in prep)
• We can tolerate moderate system-by-system uncertainty in fleet-scale analyses
• Use lowest-common denominator analysis
• Raise the common denominator: invest in data quality upfront:

• Standard and documented naming conventions
• Standard and documented DAQ systems and met packages
• Standard and documented aggregation/averaging and time zone information

• Fleet analyses can identify underperforming systems for further investigation 
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