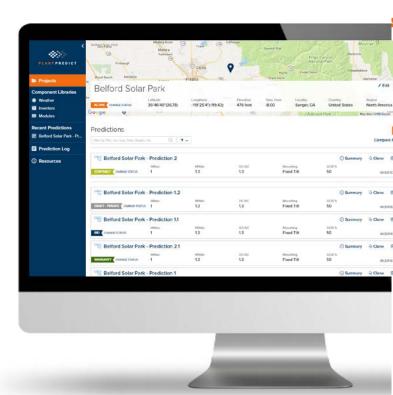
GENERATING MODULE FILES IN PLANTPREDICT

Stephen Kaplan Performance & Prediction Engineer San Francisco, CA, USA

LEADING THE WORLD'S SUSTAINABLE ENERGY FUTURE

TOPICS OF DISCUSSION


- PlantPredict Introduction
- New & Upcoming Features
- Generating Module Files in PlantPredict

INTRODUCING PLANTPREDICT

- Free, cloud-hosted, energy prediction software for utility-scale PV power plants
- Used in over 350 MWAC of contracted utility-scale PV projects
- All algorithms documented and published on www.plantpredict.com
- End-to-end utility-scale modeling
 - Sub-hourly and multi-year predictions
 - Built-in spectral correction
 - No need for pre- or post-processing
 - Pre-loaded with industry-standard weather, module, and inverter files
- API available for automation
- Independently reviewed and benchmarked against over 1 GW of operating facilities

Recently-Added Features

PV Energy Storage

Module File Generator

Bifacial PV

- 1. LGIA Excess
- 2. Energy Available
- 3. Custom

AC-coupled storage systems

nergy Storage System

inergy Capaci

C Recently Efficiency

MV Transfor

WAC Losses

More storage modeling features planned for release in September 2019.

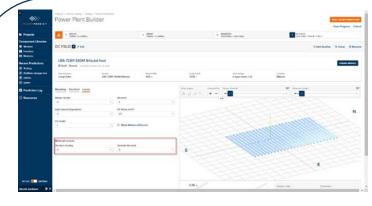
Solar,

First

Copyright

2018 ©

Recently-Added Features


First Solar Proprietary & Confidential - Finance/Accounting/RND

Recently-Added Features

Module File Generator

PV Energy Storage

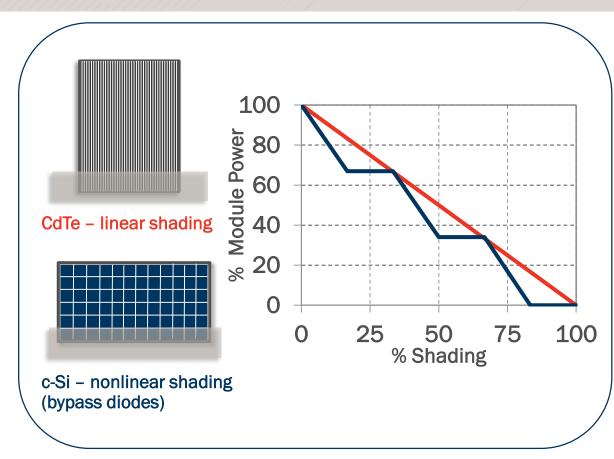
Bifacial PV

Block Results COTOT RESILTS (NEP-ITY **One-Year Prediction** 21 Dec 2010 P-Level - First Year Results Loss Factors Level 50 2025 Part Ind Borg 1054.26 291107 0 43 -85.27 -2.28 = 1.11 38 0 0.24 0 322 = 4.01 0 193 MARINE SLOPPLY 1 0. 497 044 -437 ... 0 102 0 -189 -----211 0 Plant Net Energy Results 0 Investor Stating 1 cob Jackson 0 9

Model NREL 2D View Factor Model New Module Properties "Bifaciality" Transmission Factor

New DC Field Properties Structure Shading Backside Mismatch Post Height

Solar, Inc.



New Time Series Inputs

- Tracker Angle
- Plant Output Limit
- Inverter Set Point
- Module Surface Temperature
- Albedo (?)

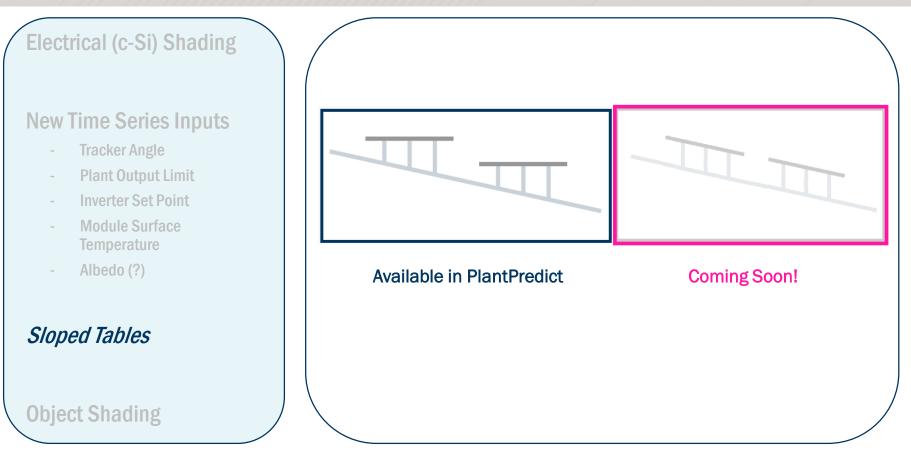
Sloped Tables

Object Shading

Electrical (c-Si) Shading

New Time Series Inputs

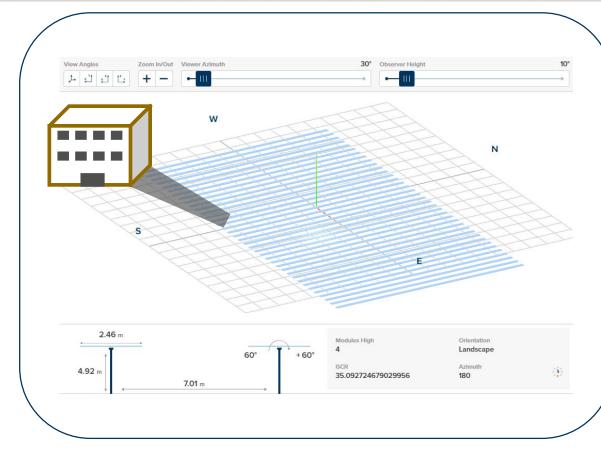
- Tracker Angle
- Plant Output Limit
- Inverter Set Point
- Module Surface Temperature
- Albedo (?)


Sloped Tables

Object Shading

	A	В	C	D	K	L	M	N	0
1	Station Type	Latitude (dd)	Longitude (d	Time Stamp	Mounting Technolo	Rotational Limits Mi	Rotational Limts Max	Tracking Method	Tilt Angle
2	NREL	15.84	78.03	IntervalBegin	Tracker	-60	60	True-Tracking	
3	MM/DD/YYYY	hh:mm:ss	GHI (W/m ²)	Temp (°C)	POAI (W/m ²)	racker Angle (*)	Plant Output Limit (KWh)	Inverter Set Point (KW)	Module Surface Lemp. ("C)
4	1/1/2010	0:00:00	0	5.7	0	-60	0	0	0
5	1/1/2010	1:00:00	0	5.8	0	-60	0	0	0
6	1/1/2010	2:00:00	0	5.9	0	-60	0	0	(
7	1/1/2010	3:00:00	0	7	0	-60	0	0	0
8	1/1/2010	4:00:00	0	5	0	-60	0	0	(
9	1/1/2010	5:00:00	0	6	0	-60	0	0	(
10	1/1/2010	6:00:00	0	6	0	-60	0	0	(
11	1/1/2010	7:00:00	71	5	67.21342852	-55	1000	800	50
12	1/1/2010				238.1915783	-45	1000	800	51
13	1/1/2010	9:00:00	395	8	421.4376151	-40	1000	790	52

First Solar Proprietary & Confidential - Finance/Accounting/RND


Electrical (c-Si) Shading

New Time Series Inputs

- Tracker Angle
- Plant Output Limit
- Inverter Set Point
- Module Surface Temperature
- Albedo (?)

Sloped Tables

Object Shading

Comparing Existing PV Module Modeling Tools

	Sandia National Laboratories PVPerformance MODELING COLLABORATIVE	System Advisor Model (SAM)	PV SYST.	No Plant predict
	PVLIB	NREL SAM	PVsyst	PlantPredict
Open-Source/Free	 Image: A second s			\checkmark
Software Library (SDK)	~	1		1
IEC-61853-1 Data Input		1		A
IV Curve Input			only @ STC	1
Optional Recombination Term?	Only for explicit IV curve calculation			A A A A
Performance Optimization Tools		limited	\checkmark	A A A A A A A A A A A A A A A A A A
Graphics/Visualization		1	\checkmark	A A A A
	https://pvpmc.sandia.gov	https://sam.nrel.gov/	http://www.pvsyst.com	https://www.plantpredict.com

Problem Statement

I know how a module performs based on laboratory measurements...

How can I take a limited set of module electrical characteristics and generate a model that accurately represents the expected performance?

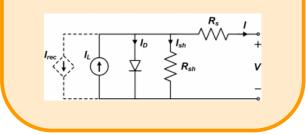
Modeling a PV Module

What is a "module file"? The entity used in PlantPredict to model a PV module.

INPUTS

- STC Electrical Characteristics
- non-STC performance (low-light efficiency, temperature coefficients)
- # Cells in Series

*describe expected performance but not used by simulation engine to calculate DC field power


<u>Resources</u>

- "Performance Assessment of a Simulation Model for PV Modules of Any Available Technology" (Mermoud et al.)
- "Improvement and validation of a model for photovoltaic array performance" (De Soto et al.)
- "Parameter Estimation for Single Diode Models of Photovoltaic Modules" (Hansen)
- "Handbook of Photovoltaic Science and Engineering" (Gray et al.)
- "Single Diode Equivalent Circuit Models" PVPMC Website (https://pvpmc.sandia.gov)

Algorithms fully documented at www.plantpredict.com

MODEL

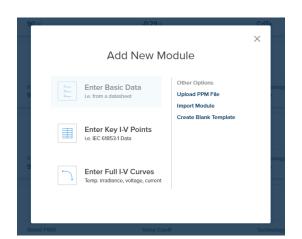
- Single Diode Equivalent Circuit Model
- optional recombination term
- linear temperature dependence on the diode ideality factor $("\mu_v")$
- DeSoto 5-parameter model for temperature/irradiance adjustment

OUTPUTS (1-diode params)

- Series Resistance
- Shunt Resistance
- Diode Saturation Current
- Diode Ideality Factor (and temperature coefficient)
- Recombination Parameter
- Light-Generated Current

*single diode parameters are used by prediction engine and determine <u>actual performance;</u> "model-calculated" MPP, etc.

First Solar Proprietary & Confidential - Finance/Accounting/RND


Solar,

Copyright First

Manufacturer Datasheet as Input

FS.MOR FS.MOR 15.605 15.4430 IS NO. 1215 & 61730 1500m. Cl 178.5 430.0 435.0 12702 Sell Med Cont 10068 3 68 Dust and San UL 1703 1500V Lists SI Eligible CITING REALLY TELLS orgi Term Sequential 105.1 CONTATION . ISO 8004-2015 & L4004-2045 HEAS 18001 2007 🔝 🐵 CE 0.328/70 (19 0.248.0 0 0.046/70 MECHANICAL DRAWING MCA DWD 1 -------Fighet Don 0.+Walki 0 + 1300 + 115 (86 + 15 + 41e) Pallets per 40 18 10184

What if I am given a module datasheet?

Data Sources/Inputs Manufacturer Datasheet

IEC-61853-1 Test Matrix I-V Curve Data

Generating a Module File Initial Calculation with Defaults Matching Expected Performance

Manufacturer Datasheet as Input

FS-6420

FS-6420A

420.0

17.0

180.4

2.33

218.5

2.54

PMAX (W)

%

V_{MAX} (V)

I_{MAX} (A)

 $V_{OC}(V)$

Isc (A)

Data Sources/Inputs

I-V Curve Data

NOMINAL VALUES

Efficiency (%)

Voltage at PMAX

Current at PMAX

Open Circuit Voltage

Short Circuit Current

Nominal Power³ (-0/+5%)

Generating a Module File

Manufacturer Datasheet

IEC-61853-1 Test Matrix

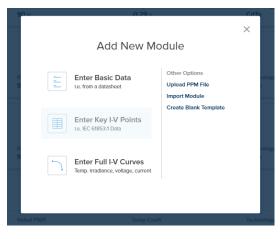
Initial Calculation with Defaults

Matching Expected Performance

Cell Type Thin film CdTe semiconductor, up to 264 cells Module Library > Generate Module . Module Generator PLANTPREDICT Enter basic module information Projects General Characteristics **Component Libraries** Cell Technology Number of Cells in Series Weather CdTe 264 Inverters Model Type Modules 1-Diode Recombination Recent Predictions 17070NC 17070TX Electrical Data at STC Temperature Coeffs. 17070NV Maximum Power Power Temp. Coeff. 17070ID 420 w 0.32 %/*C E 17070CA Voc Temp. Coeff. MODEL TYPES AND RATINGS AT STANDARD TEST CONDITIONS (10) Voc Prediction Log 218.5 -0.28 %/*C 10 Resources lsc. Isc Temp. Coeff 2.54 A 0.04 %/*C Solar, Inc. Vmp 180.4 V. Imp 2.33 A TEMPERATURE CHARACTERISTICS Module Operating Temperature Range (°C) -40 to +85 Temperature Coefficient of P T_K (P_{MAX}) -0.32%/°C [Temperature Range: 25°C to 75°C] Temperature Coefficient of Voc $T_{\kappa}(V_{oc})$ -0.28%/°C Temperature Coefficient of I... +0.04%/°C $T_{\kappa}(I_{sc})$

What if I am given a module datasheet?

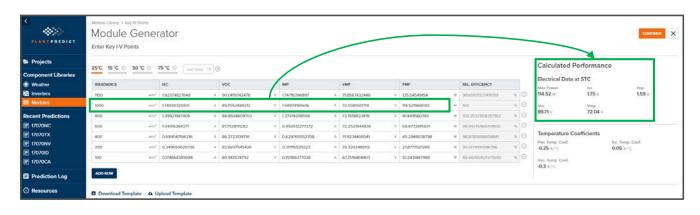
First Solar Proprietary & Confidential - Finance/Accounting/RND



Generating a Module File Initial Calculation with Defaults Matching Expected Performance

What if my only source of data is an IEC-61853-1 test matrix?

Temperature [C]	Irradiance [W/m2]	Isc [A]	Voc [V]	Imp [A]	Vmp [V]	Pmp [W]	FF [%]	Eff [%]	Ix [A]	box [A]
1	5 100	0.174	83.71	0.150	70.28	10.56	72.42	14.67	0.169	0.122
1	5 200	0.349	86.41	0.310	72.80	22.57	74.93	15.67	0.342	0.248
1	5 400	0.698	88.97	0.628	74.38	46.72	75.25	16.22	0.683	0.491
1	5 600	1.046	90.46	0.948	74.66	70.74	74.79	16.38	1.027	0.726
1	5 800	1.395	91.51	1.268	74.51	94.52	74.05	16.41	1.377	0.955
1	5 1000	1.743	92.29	1.586	74.21	117.68	73.14	16.34	1.722	1.173
2	5 100	0.175	80.95	0.151	67.75	10.24	72.36	14.23	0.170	0.122
2	5 200	0.350	83.67	0.311	70.32	21.88	74.78	15.19	0.343	0.248
2	5 400	0.700	86.27	0.630	71.92	45.29	75.05	15.73	0.685	0.490
2	5 600	1.049	87.75	0.951	72.25	68.68	74.59	15.90	1.031	0.725
2	5 800	1.399	88.85	1.272	72.20	91.85	73.88	15.95	1.380	0.952
2	5 1000	1.749	89.71	1.590	72.04	114.52	72.98	15.91	1.726	1.168
2	5 1100	1.924	90.04	1.747	71.86	125.55	72.48	15.85	1.898	1.274
5	0 100	0.177	73.83	0.153	61.08	9.32	71.47	12.95	0.172	0.121
5	0 200	0.354	76.77	0.314	63.77	20.01	73.72	13.89	0.347	0.246
5	0 400	0.707	79.55	0.636	65.41	41.58	73.90	14.44	0.694	0.489
5	0 600	1.061	81.06	0.957	65.84	62.98	73.25	14.58	1.042	0.720
5	0 800	1.414	82.14	1.279	65.83	84.19	72.48	14.62	1.393	0.944
5	0 1000	1.768	83.05	1.599	65.71	105.07	71.55	14.59	1.745	1.160
5	0 1100	1.945	83.40	1.756	65.59	115.19	71.01	14.54	1.918	1.263
7	5 100	0.179	65.50	0.155	52.94	8.22	70.10	11.42	0.175	0.120
7	5 200	0.358	68.74	0.317	55.57	17.62	71.60	12.23	0.352	0.243
7	5 400	0.717	71.87	0.637	57.60	36.69	71.20	12.74	0.701	0.478
7	5 600	1.075	73.80	0.960	58.46	56.12	70.76	12.99	1.055	0.706
7	5 800	1.433	75.10	1.283	58.72	75.33	69.99	13.08	1.412	0.926
7	5 1000	1.791	76.10	1.602	58.70	94.04	69.01	13.06	1.766	1.140
7	5 1100	1.970	76.76	1.763	58.87	103.77	68.61	13.10	1.944	1.246



Photovoltaic (PV) module performance testing and energy rating – Part 1: Irradiance and temperature performance measurements and power rating, IEC 61853-1 Ed. 1.0, 2011.

Data Sources/Inputs Manufacturer Datasheet IEC-61853-1 Test Matrix I-V Curve Data

Generating a Module File Initial Calculation with Defaults Matching Expected Performance


What if my only source of data is an IEC-61853-1 test matrix?

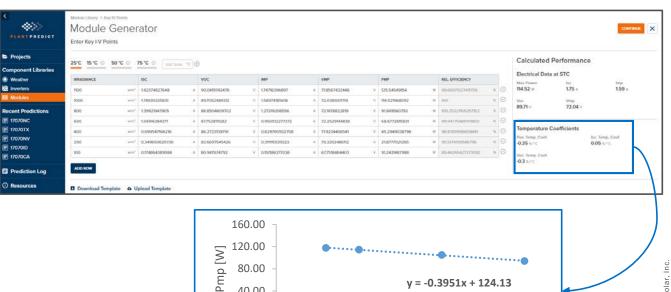
Data Sources/Inputs Manufacturer Datasheet IEC-61853-1 Test Matrix I-V Curve Data

Generating a Module File Initial Calculation with Defaults Matching Expected Performance

What if my only source of data is an IEC-61853-1 test matrix?

$$EIR_{i} = \frac{P_{mp,i}}{P_{max,norm}}$$
$$P_{max,norm} = P_{mp,1000} \frac{i}{1000}$$

Relative Efficiency Calculation


Photovoltaic (PV) module performance testing and energy rating – Part 1: Irradiance and temperature performance measurements and power rating, IEC 61853-1 Ed. 1.0, 2011.

First Solar Proprietary & Confidential - Finance/Accounting/RND

Data Sources/Inputs Manufacturer Datasheet IEC-61853-1 Test Matrix I-V Curve Data

Generating a Module File Initial Calculation with Defaults Matching Expected Performance

What if my only source of data is an IEC-61853-1 test matrix?

20

Temperature Coefficient Calculation (Linear Regression)

Temperature [deg-C]

40

y = -0.3951x + 124.13

60

80

Photovoltaic (PV) module performance testing and energy rating - Part 1: Irradiance and temperature performance measurements and power rating, IEC 61853-1 Ed. 1.0, 2011.

First Solar Proprietary & Confidential - Finance/Accounting/RND

80.00

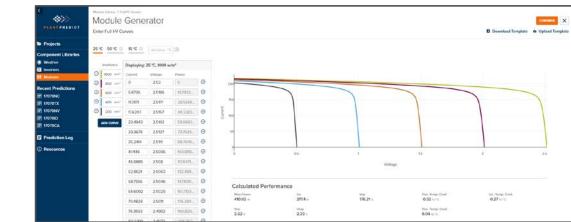
40.00

0.00 0

I-V Curve Test Data as Input

Data Sources/Inputs

Manufacturer Datasheet IEC-61853-1 Test Matrix I-V Curve Data

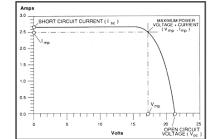

Generating a Module File Initial Calculation with Defaults Matching Expected Performance

Temperature [deg-C]	Irradiance [W/m2]	I [A]	[V]
	25 1000	9.43	(
	25 1000	9.4279	1.271
	25 1000	9.4258	2.5419
	25 1000	9.4236	3.8129
	25 1000	9.4215	5.0838
	25 1000	9.4194	6.3548
	25 1000	9.4173	7.6257
	25 1000	9.4152	8.8967
	25 1000	9.4131	10.1676
	25 1000	9.4109	11.4386
	25 1000	9.4088	12.7095
	25 1000	9.4067	13.9805
	25 1000	9.4046	15.2514
	25 1000	9.4025	16.5224
	25 1000	9.4004	17.7933
	25 1000	9.3982	19.0643
	25 1000	9.3961	20.3352
	25 1000	9.394	21.6062
	25 1000	9.3918	22.8771
	25 1000	9.3897	24.1481
	25 1000	9.3874	25.419
	25 1000	9.385	26.69
	25 1000	9.3823	27.9609
	25 1000	9.3789	29.2319
	4000	0.0740	00 5000

What if I only have I-V curve data?

9 <mark>0 w</mark>		-0.29 v.		CdTe	2
		Add New M	lodule	×	
R 9		Enter Basic Data Le. from a datasheet	Other Options Upload PPM File Import Module Create Blank Template		iolo
R		Enter Key I-V Points I.e. IEC 61853-1 Data			iolo
9	$\overline{}$	Enter Full I-V Curves Temp. Irradiance, voltage, current			;
Rated PWR		Temp Co	off	Techr	nolo

I-V Curve Test Data as Input


What if I only have I-V curve data?

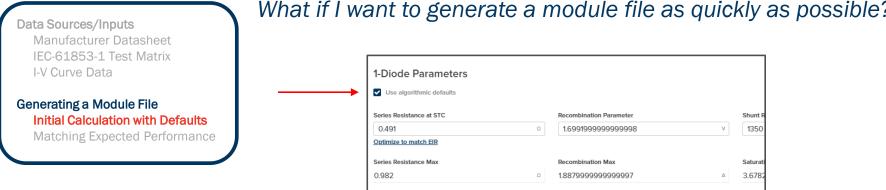
Manufacturer Datasheet IEC-61853-1 Test Matrix I-V Curve Data

Data Sources/Inputs

1

Generating a Module File Initial Calculation with Defaults Matching Expected Performance

2


Resulting dataset processed like IEC-61853-1 data to generate:

- **Electrical Characteristics @ STC**
- 2. **Temperature Coefficients**
- 3. Relative efficiencies at low-light

For each I-V curve at a given Temperature and Irradiance, I_{sc} / V_{oc} / I_{mp} / V_{mp} / P_{mp} extracted via graphical methods.

First Solar Proprietary & Confidential - Finance/Accounting/RND

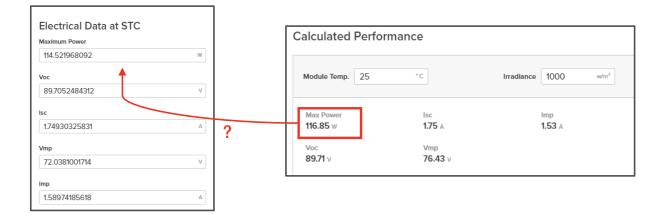
Initial Calculation with Default Assumptions

What if I want to generate a module file as quickly as possible?

Automatically calculates a set of 1-diode parameters based on technology-dependent (ie. cSi vs. CdTe) generalizations, such as:

- low-light relative efficiency at 200 W/m² is \sim 97% (cSi)
- Series Resistance is ~50% of maximum series resistance (CdTe)
- Recombination Parameter is ~90% of maximum recombination parameter (CdTe)
- etc.

Initial Calculation with Default Assumptions


Data Sources/Inputs Manufacturer Datasheet IEC-61853-1 Test Matrix I-V Curve Data

Generating a Module File Initial Calculation with Defaults

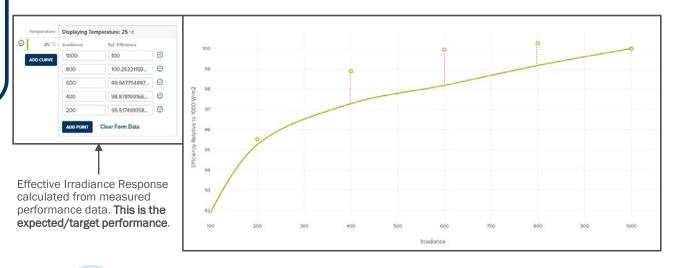
Matching Expected Performance

Disadvantages of Using Default Assumptions

Making single assumptions for ALL c-Si or ALL CdTe modules is a bad idea!

Significant error between nameplate power and maximum power calculated from resulting single-diode parameters.

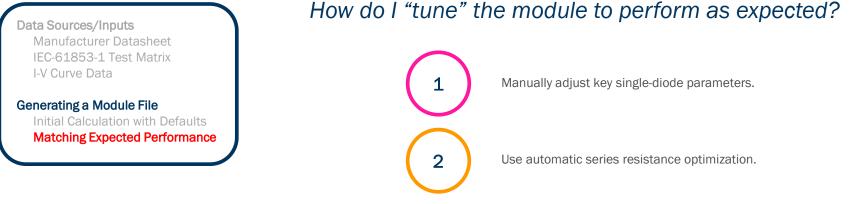
Initial Calculation with Default Assumptions


Data Sources/Inputs Manufacturer Datasheet IEC-61853-1 Test Matrix I-V Curve Data

Generating a Module File Initial Calculation with Defaults

Matching Expected Performance

Disadvantages of Using Default Assumptions


Making single assumptions for ALL c-Si or ALL CdTe modules is a bad idea!

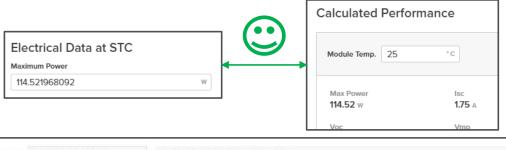
2

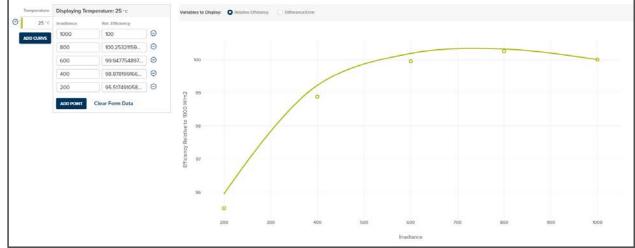
Low-light performance does not match expected performance from measured test data (IEC-61853-1).

Matching Expected Module Performance

1-Diode Parameters				
Use algorithmic defaults				
Series Resistance at STC 0.491 0 Optimize to match EIR	Recombination Parameter 1.6991999999999998 v	Shunt Resistance at STC 1350	Exp. Dep. of Shunt Resist.	Dark Shunt Resistance 16000
Series Resistance Max 0.982	Recombination Max 1.88799999999999997 A	Saturation Current at STC 3.67821619420339e-11 A	Diode Ideality at STC 1.3305656605886351	Lin. temp. Dep. of Gamma -0.13487692250000155

How do I "tune" the module to perform as expected?


Matching Expected Module Performance


Module performance tuned successfully!

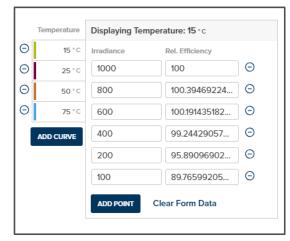
Data Sources/Inputs Manufacturer Datasheet IEC-61853-1 Test Matrix I-V Curve Data

Generating a Module File

Initial Calculation with Defaults Matching Expected Performance

First Solar Proprietary & Confidential - Finance/Accounting/RND

Module File Ready for Simulation

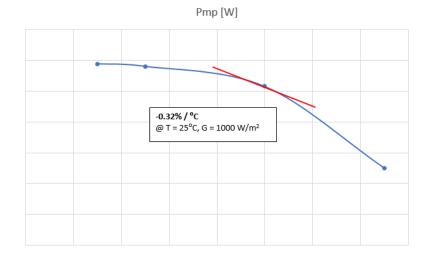

PLANTPREDICT	Projects > 17070NC (CFV Comparison) > 17070NC > Power P Power Plant Builder	tant Builder				SAVE + CLOSE POWER PLANT
🖕 Projects						Save Progress Cancel
Component Libraries	BLOCK 0.5 MWac 0.61 MWdc	1 ARRAY 0.5 MWac 0.61 MWdc	A	INVERTER 25 KWac 30.75 KWdc	1 DC FIELD 30.75 KWdc 114.52 W 6.15 m	1
 Weather Inverters Modules 	DC FIELD 1 / Edit				⊙ Add A	Another ᅯ Clone 窗 Remove
Recent Predictions I7070NC I7070TX	17070-06 First Solar Module Files					CHANGE MODULE
 17070NV 17070ID 17070CA 	Manufacturer Model First Solar FS-4115-3	Rated PWR 114.521968092 w	Temp Coeff -0.3176139500489223 %	Technology CdTe	Faciality Monofacial	
Prediction Log	Mounting Electrical Losses			Viewer Azimuth	30° Observer Height	10°
 Resources 	Mounting Type FIXED TILT TRACKER					•
	Tilt Angle (degrees) 20 -	Seasonal Tilt OFF ON				N
	Module Orientation	Modules High	+ + + + +			

Algorithm Limitations & Potential Improvements

Limitation: Automatic Series Resistance Optimization currently only uses relative efficiency data at 200, 400, 600, 800 W/m² (@ 25°C)

- <u>Potential Improvement</u>: Implement a more sophisticated model to match measured performance at *any* temperature/irradiance condition.
- <u>Potential Strategy</u>: Dobos/MacAlpine method as published in "Procedure for applying IEC-61853 test data to a single diode model." 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC) (2014): 2846-2849.

Temperature	Displaying Temperature: 25 ° c				
⊖ 25°C	Irradiance	Rel. Efficiency			
ADD CURVE	1000	100	Θ		
	800	100.25321159	Θ		
	600	99.947754897	Θ		
	400	98.878199166	Θ		
	200	95.517491058	Θ		
	ADD POINT Clear Form Data				


Limited Performance Tuning Target (Current)

Comprehensive Performance Tuning Targets (Future)

Algorithm Limitations & Potential Improvements

<u>Related Limitation</u>: Algorithm assumes a linear temperature coefficient of power, calculated via linear regression. Therefore, the resulting model's performance does not match measured data at non-STC conditions.

 <u>Potential Improvement</u>: Treat temperature dependence as non-linear. The nameplate (datasheet) "linear" temperature coefficient should be interpreted as the **derivative** of the measured non-linear trend at STC.

Need an account?

support@plantpredict.com

LEADING THE WORLD'S SUSTAINABLE ENERGY FUTURE

NOTICE TO RECIPIENTS

The Recipient acknowledges that (i) this presentation is provided to the Recipient for informational purposes only, (ii) neither First Solar, Inc. ("First Solar") nor any of its affiliates bears any responsibility (and shall not be liable) for the accuracy or completeness (or lack thereof) of any information contained within this presentation and the oral statements made in connection therewith and this presentation and the oral statements made in connection therewith are not to be relied upon as a substitute for independent review of such other information as the Recipient may deem appropriate or prudent to review, (iii) no representation regarding the material within this presentation and the oral statements made in connection therewith is made by First Solar or its affiliates, (iv) neither First Solar nor any of its affiliates have made an independent verification as to the accuracy or completeness of the information within this presentation and the oral statements made in connection therewith, and (v) neither First Solar nor any of its affiliates shall have any obligation to update or supplement any information contained within this presentation and the oral statements made in connection therewith or otherwise provide additional information.