Hierarchical Fault Detection and Multimodal Diagnosis in Large-Scale Photovoltaic Systems

Yingying Zhao, Dahai Kang

Concord New Energy Group Limited - China, Beijing, P. R. China

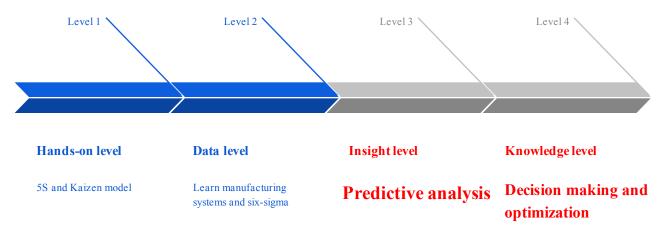
赵莹莹、康大海

协合新能源集团有限公司

-FDD (Fault Detection and Diagnosis) in large-scale photovoltaic (PV) systems

Part 1: Background

Part 2: Challenges


Part 3: Proposed Solution

Part 4: Experiments and Results

Part 5: Industrial Application

Part 6: Conclusions and Future Work

Intelligent Operation and Maintenance (O&M) in large-scale Photovoltaic (PV) Systems

FDD:

- Eeffectiveness
- **Reliability and robustness against unforeseen circumstances**

1st Challenges: diverse and complex faults

Glass (front-cover) breakage

Grassing shading

Building shading

Hot spot

Surface soiling

Fig. 1: Commonly occurred faults in PV system.

2nd Challenge: limited information collected

SCADA systems only provide <u>current</u> and <u>voltage</u> information at individual string level

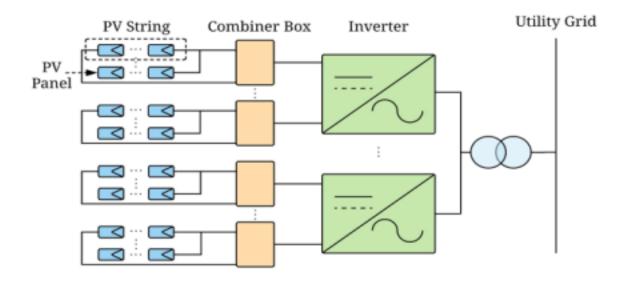


Fig. 2: Diagram of a grid-connected large-scale PV system.

FDD Solution overview

- Data preprocessing
- Hierarchical fault detection
- Multimodal fault diagnosis

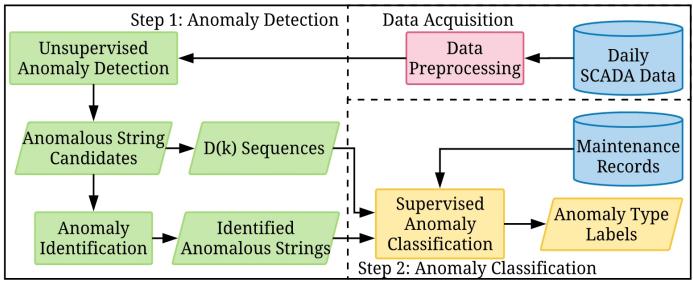


Fig. 3: Overview of the proposed FDD solution for PV systems.

Data preprocessing

Data cleaning	Data filtering	Data downsampling
Remove errors	Smooth noise caused by environmental variations (e.g., drifting clouds) and measure variabilities	 Reduce computation cost 1min 5 min 10 min
Relative Humidity (%) 2016-09 2016-010 2016-09 2000 2016-09 2000 2016-09 2000 2000 2000 2000 2000 2000 2000 2	8 9 9 9 9 9 9 9 9 9 9 9 9 9	

Motivations of fault detection

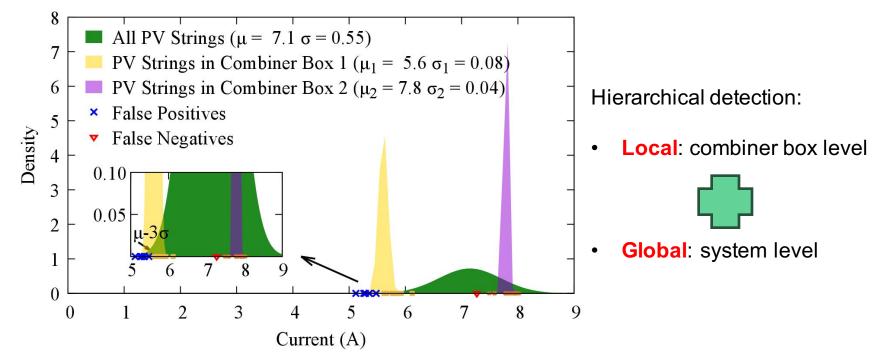


Fig. 4: Gaussian distributions of PV strings at the same timestamp for a 39.36 MWp PV system

Fault detection

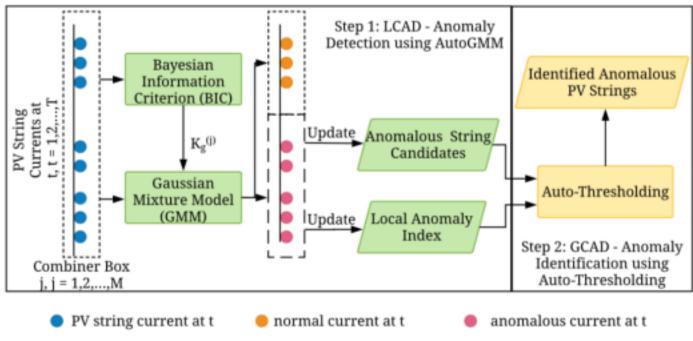
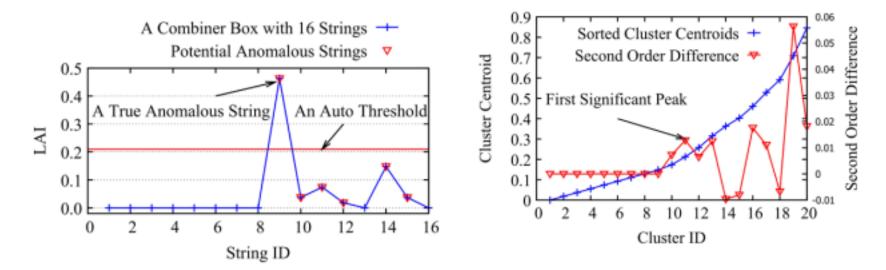



Fig. 5: Diagram of fault detection process.

A case study of hierarchical fault detection

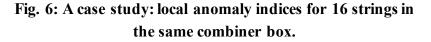
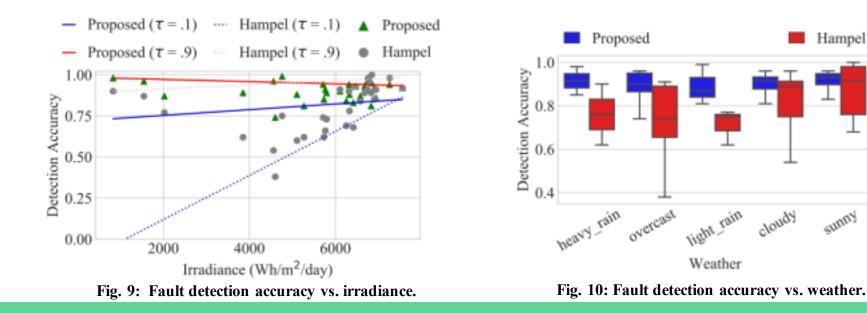



Fig. 7: An illustration of automatically identifying local anomaly index threshold.

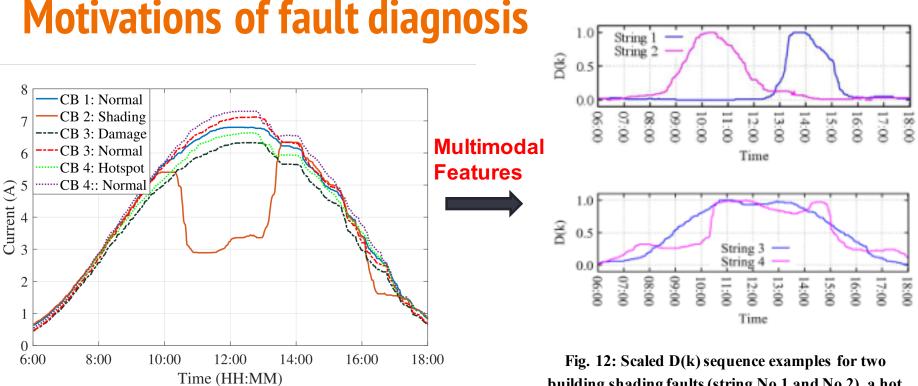
Overall performance of fault detection



Improved detection accuracy: from 78.8% to 90.2%

Fig. 8: Detection accuracy with top-k faults. (* indicates the use of filtered data)

Sensitivity analysis


- The proposed solution achieves higher detection accuracy.
- This accuracy exhibits less variation under the same conditions.

Hampel

sunny

12

Fig. 11: Commonly occurred faults.

Fig. 12: Scaled D(k) sequence examples for two building shading faults (string No.1 and No.2), a hot spot fault (string No. 3), and a grassing shading faults (string No. 4).

Visualization of features and confusion matrix

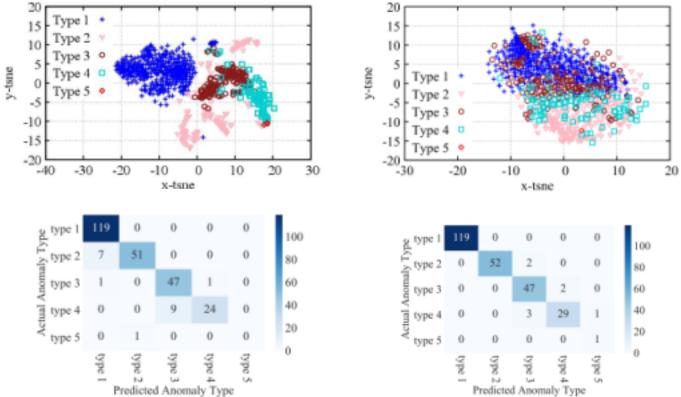
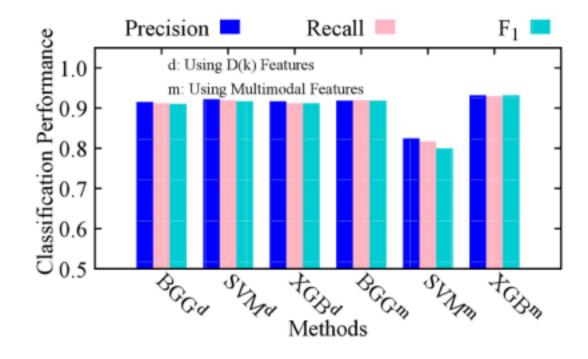



Fig. 13: Visualization of features (upper), confusion matrix (bottom), based on D(k) features (left), and based on multimodal features (right).

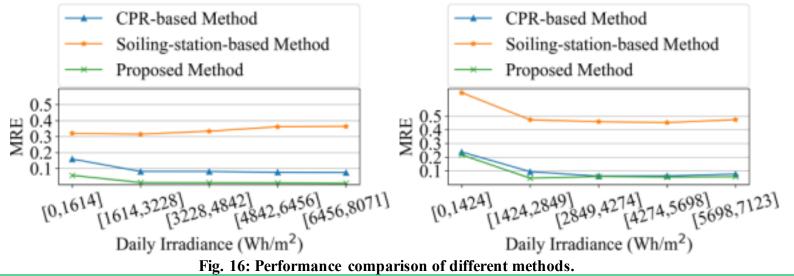
Fault diagnosis

To the best of our knowledge, this is the first work that uses SCADA data to classify commonly occurring anomalies at the PV string level in large-scale PV systems.

- Precision: 93.0%
- Recall: 92.8%

Fig. 14: Classification performance of different methods.

Weather Station

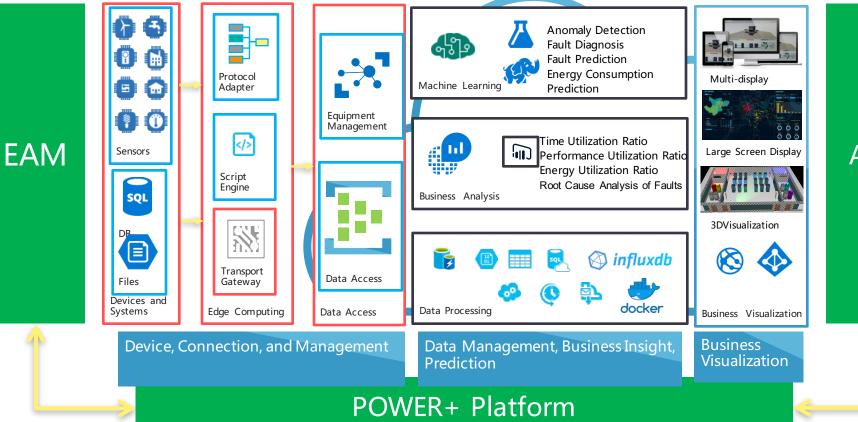

Automatic soiling loss quantification

Under soiling conditions, the lowest mean relative error (MRE) of the estimated power production:

- 1. Drops from 0.315 (using the soiling-station-based method) and 0.075 (using the CPR-based method) to 0.007 at one PV site.
- 2. At another PV site, the MRE drops from 0.452 (using the soiling-station-based method) and 0.061 (using the CPR-based method) to 0.046.

Fig. 15: Picture of the weather station.

Building Intelligent O&M by Energy Internet


Energy internet cloud platform "POWER+" has undergone continuous optimization and has been applied total installed capacity of 5GW+ By taking advantage of its "POWER+" products, the Group actively builds a cloud-based O&M model, which provides the centralized management, personalized and precise operation as well as maintenance services manned by no one or only a few people

76 wind power and PV power plants' overall O&M in total, with DC nominal capacity 4600 MW

Internet O&M Management POWER+

Through the diagnostic analysis by "POWER+" platform, the average power generation of wind power plants and PV power plants increased more than 1% and 5%, respectively. Successfully passed the new standard certification of the "Three-standard System". Obtained the TÜV wind turbine O&M capability certification from Germany as the first third-party independent O&M company that has passed TÜV International certification

Framework of Intelligent O&M

AOM

Conclusions and Future Work

Conclusion

- 1. An effective and robust FDD solution for PV systems.
- The proposed solution has been deployed in sustainable energy systems with the installed capacity larger than 5 GW, and averaged power generation have increased more than 5%.
- 3. Research papers

Future work

- Combining thermal-related method with data driven method, so as to perform more exact fault localization.
- 2. Quantifying soiling loss in **mountainous areas**, as well as in lower irradiance conditions.
- Yingying Zhao, Qi Liu, Dongsheng Li, Dahai Kang, Qin Lv, Li Shang. Hierarchical Anomaly Detection and Multimodal Anomaly Classification in Large-Scale Photovoltaic Systems. IEEE Trans. On Sustainable *Energy*.
- Yingying Zhao, Dongsheng Li, Qi Liu, Qin Lv, Li Shang. Deriving Customer Privacy from Randomly Perturbed Smart Metering Data. In IEEE 16th International Conference on Industrial Informatics (INDIN 2018).
- Dongsheng Li, Ying ying Zhao, Yawen Zhang, Qin Lv, Li Shang. An Algorithmic Method for Tampering-Proof and Privacy-Preserving Smart Metering. In IEEE 16th International Conference on Industrial Informatics (INDIN 2018).
- Qi Liu, Yingying Zhao, Yawen Zhang, Dahai Kang, Qin Iv, Li Shang. Hierarchical context-aware anomaly diagnosis in large-scale PV systems using SCADA data. In IEEE 15th International Conference on Industrial Informatics (INDIN 2017).
- Ao Dong ; Yingying Zhao ; Xiwei Liu; Li Shang; Qi Liu; Dahai Kang, Fault diagnosis and classification in photovoltaic systems using SCADA data, 2017 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC'17)
- Qi Liu, Yawen Zhang, Yingying Zhao, Duanfeng Gao, David W Gallaher, Qin Lv, Li Shang. Automatic multi-sens or data quality checking and event detection for environmental sensing, 2017 AGU Fall meeting, 2017.

Thank you!

Please feel free to contact us if you have any inquiries:

Yingying Zhao Tel: +86-18221511565 Email: zhaoyy@cnegroup.com Dahai Kang Tel: +86-13371606888 Email: kangdh@cnegroup.com