

## Horizontal Axis Trackers with Bifacial Modules in PVsyst

**10<sup>th</sup> PVPMC Workshop** 

1-2.5.2018 Albuquerque NM, USA

André Mermoud, Bruno Wittmer Bruno.Wittmer@pvsyst.com

PVSYST SA - Route du Bois-de-Bay 107 - 1242 Satigny - Suisse www.pvsyst.com

# **Overview**

- Bifacial Models in PVsyst
  - Fixed Tilt Sheds
  - Horizontal Axis Trackers

# Bifacial Tracker Simulations

- Bifacial Gain
- Impact of Pitch (GCR), and Height
- Impact of Latitude and Climate
- Summary and Outlook



# Introduction

## **Bifacial Shed Model was introduced in PVsyst V6.60**

- 2D Model for fixed tilt sheds
- Can be used for long regular rows

## **Bifacial Tracker Model since PVsyst V6.70**

- 2D Model for horizontal axis trackers

+

Generalization of shed model with varying tilt



**Bifacial model** 

for fixed tilt sheds

Unlimited trackers: first step towards horizontal bifacial tracking model (since V6.6.7)







# **Using the Bifacial Models in PVsyst**



# **Bifacial Shed Model in PVsyst**

#### **Bifacial calculation steps**



#### Irradiance on Ground

Ground Acceptance



2.

Ground acceptance

Distance at ground level [m]

of diffuse light

#### 4. Sky diffuse and direct on back side



# **Bifacial Tracker Model in PVsyst**

### **Irradiance on Ground**

- Direct (Beam) Fraction
- Sky Diffuse Fraction

## **Reflection from Ground**

- To back side
- To front side
- Lost to sky

Green Contributions are constant for sheds. With trackers, they become functions of sun position (sun profile angle).





## **Additional contributions**

- Direct (beam) fraction on rear side
- Sky diffuse fraction on rear side
- IAM losses for each contribution

This bifacial model can be used for horizontal axis trackers. The tracking algorithm minimizes the Angle of Incidence!



# **Simplified Preliminary Calculation**

## Monthly breakdown of irradiances



#### On Ground

#### On PV module rear side









# **Bifacial Simulation and Results**

**Unlimited Trackers** 

# Additional contributions with Bifacial Models

- Global incident on ground
- Ground albedo
- View factor rear side (irradiance renormalization for ground and module surface)
- Sky diffuse on rear side
- Beam effective on rear side
- Shading loss on rear side
- Total irradiance on rear side
- Ground reflection on front side

IAM losses are included in View Factor





# **Studying Bifacial Behavior with PVsyst**

## **Optimization Tool**

Allows quick parametric scans to optimize Irradiance or Yield

## **Batch Mode**

Parametric scans with many parameters and output to CSV files for further analysis







## **Hourly Results**

Simulation results in hourly steps for > 80 different variables





#### Custom Analysis



The following results were obtained with PVsyst 6.71 batch mode and hourly result files



# **Bifacial Gain and Tracker Gain**

## **Bifacial Irradiance Gain (BG<sub>Irr</sub>)**



 $BG_{Irr} = rac{Rear \, Side \, Irradiance}{Front \, Side \, Irradiance}$ 

The full Bifacial Gain BG includes also bifaciality factor and bifacial mismatch It is smaller than BG<sub>Irr</sub>

## Tracker Irradiance Gain (TG<sub>Irr</sub>)







Tracker irradiance gain with respect to Fixed Tilt Sheds,

same width, pitch (GCR) and height over ground



# **Comparisons of Gain Factors**











Tracker Irradiance Gain



#### Parameters used here:

Site: Albuquerque NM, 35.05°N, 106.62°W, 1614m ASL Weather data: Meteonorm 7.1, typical year Geometry: Pitch=6.6m, width 3m, GCR 45%, height 3m **Ground albedo 30%** 

# **Impact of Layout on Irradiance Gain**

Parameters used here: Site: Albuquerque NM, 35.05°N, 106.62°W, 1614m ASL Weather data: Meteonorm 7.1, typical year Geometry: Pitch=6.6m, Width 3m, GCR 45%, Height 3m Ground albedo 30%



## **Ground Covering Ratio GCR:**



## **Height over Ground:**





# **Bifacial Gain for different Latitudes (Clear Sky)**

Parameters used here: Site: Artificial points from Equator to 70°N, 0m ASL Weather data: Clear sky model Geometry: Pitch=6.6m, Width 3m, GCR 45%, Height 3m **Ground albedo 30%** 



#### **Irradiance Values**



## **Bifacial Irradiance Gain (BG**<sub>Irr</sub>)





# **Bifacial Gain in different Climates (Trackers)**

| Site                 | Stockholm | Sharorah | Atacama | Kuala Lumpur |
|----------------------|-----------|----------|---------|--------------|
| Latitude             | 59.35     | 17.5     | -23.42  | 3.12         |
| Diff/Glob            | 49.5%     | 26.1%    | 28.6%   | 58.9%        |
| GlobEff              | 1225      | 2999     | 2889    | 1753         |
| GlobGnd              | 435       | 1059     | 1008    | 804          |
| GlobBak              | 137       | 286      | 276     | 236          |
| BG <sub>Irr</sub> TR | 11.2%     | 9.5%     | 9.5%    | 13.5%        |



With horizontal axis trackers the bifacial gain is always larger for the diffuse component







# **Bifacial Gain in different Climates (Trackers)**

| Site                 | Stockholm | Sharorah | Atacama | Kuala Lumpur |
|----------------------|-----------|----------|---------|--------------|
| Latitude             | 59.35     | 17.5     | -23.42  | 3.12         |
| Diff/Glob            | 49.5%     | 26.1%    | 28.6%   | 58.9%        |
| GlobEff              | 1225      | 2999     | 2889    | 1753         |
| GlobGnd              | 435       | 1059     | 1008    | 804          |
| GlobBak              | 137       | 286      | 276     | 236          |
| BG <sub>Irr</sub> TR | 11.2%     | 9.5%     | 9.5%    | 13.5%        |





With horizontal axis trackers the bifacial gain is always larger for the diffuse component





# **Bifacial Gain in different Climates (Fixed Tilt)**

| Site                 | Stockholm | Sharorah | Atacama | Kuala Lumpur |
|----------------------|-----------|----------|---------|--------------|
| Latitude             | 59.35     | 17.5     | -23.42  | 3.12         |
| Diff/Glob            | 49.5%     | 26.1%    | 28.6%   | 58.9%        |
| GlobEff              | 1384      | 2375     | 2327    | 1384         |
| GlobGnd              | 474       | 1282     | 1214    | 924          |
| GlobBak              | 137       | 327      | 313     | 251          |
| BG <sub>Irr</sub> FT | 12.5%     | 13.8%    | 13.5%   | 18.2%        |







# **Summary and Outlook**

## Summary

- Bifacial model for horizontal axis trackers was implemented in PVsyst
- Detailed simulations and parametric studies are possible
- Bifacial gain for trackers is smaller than for fixed tilt sheds
- Diffuse contributions have higher BG in trackers than clear sky conditions

## Open Questions, Next Steps

- Validation against measurements
- Model the mismatch due to non-uniform irradiance on back side
- Bifacial model for vertical fixed tilt installations
- General bifacial model based on near shading 3D drawing

