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Who we are?
leader for pv monitoring & solar power forecast‘s

      

EXPERTS IN FORECASTING

• First provider of online feed-in 
monitoring for grid operators 
worldwide 

• More than 10 years of experience in 
grid forecasting

• Biggest data pool for the 
performance of PV systems 
worldwide  

• > 46 000 pv systems worldwide 
equipped with meteocontrol‘s 
monitoring solutions
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MOTIVATION FOR ONLINE FEED-IN

EXPERTS IN FORECASTING

GRID STABILITY

-  More accurate grid management with 
high amount of renewable feed-in
 
- Curtailment management
 
- More renewable energy is feed-in to 
the grid 

 

SETTLEMENTS
REGULATION 

- Reliable data for spot markets 

- State allowances (like EEG in 
Germany)

AVAILABILITY

- Measurements are only available with 
a time delay

- Only a small amount
 
- Not reliable because no quality control 
of provided data 
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ONLINE FEED-IN ESTIMATION
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MONITORING OF DISTRIBUTED SOLAR ENERGY GENERATION
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SYSTEMS IN MONITORING
case study: Germany

      

EXPERTS IN FORECASTING

• > 20 000 systems in monitoring

• Spatial representative measurement 
ensemble for germany
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SYSTEMS IN MONITORING
case study: Germany

      

EXPERTS IN FORECASTING

• > 20 000 systems in monitoring

• Spatial representative measurement 
ensemble for germany

• Difficult to find representative 
system configuration in 
measurement ensemble 

• 1,5 Mio systems in germany

~ 80 % < 20 kW

• Btw.: Same for the USA dataset

 Yields in non-linear and diurnal 
errors after the upscaling process 
of power output measurements
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BIAS BY TIME OF DAY OVER A MONTH
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REQUIREMENTS TO THE ML MODEL

      

EXPERTS IN FORECASTING

• Diurnal Error of estimation against 
Feed-In

• Feed-In: Target values provided by 
Tennet TSO with a time delay of ~2 
months

Optimisation tool that considered 
the time of day and the solar 
cycle
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ANALOG SAMPLING

      

EXPERTS IN FORECASTING

• Novell approach to pre sample the 
trainings dataset

• Based on Analog Ensemble metric

• Builds up a ranking for most similar 
datapoints with regards to the input 
feature Nv

• Combined with classical k-nearest 
neighbours method and a linear 
regression from scikit-learn
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EXPERTS IN FORECASTING

• Novell approach to pre sample the 
trainings dataset

• Based on Analog Ensemble metric

• Builds up a ranking for most similar 
datapoints with regards to the input 
feature Nv

• Combined with classical k-nearest 
neighbours method and a linear 
regression from scikit-learn

Assumption: 

 n-nearest datapoints having the 
same error charateristics
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HYBRID SOLAR POWER FORECAST MODEL 

Satellite Images
→ Cloud-Motion

Several
Numerical Weather

 Prediction
Model

SPATIO-TEMPORAL COMBINATION
REGARDS TO THE LOCAL 

WEATHER CONDITION

Forecast Optimization
- Regression

- Neural Network

OPTIMIZED 
SOLAR POWER FORECAST

PV Power
 Measurement

→ Online Feed-In
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RESULT OF THE COMBINATION MODEL

EXPERTS IN FORECASTING
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