

Impact of PV Module Degradation Rate on Utility Scale Systems

Sara MacAlpine and Chris Wolfrom juwi Inc.

2019 PV Systems Symposium – May 14, 2019

Outline

- Motivation
- Methodology
- System Energy Degradation
- LCOE
 - Linear Module Degradation
 - Nonlinear Module Degradation
 - Variable Module Degradation
- Summary

Motivation

Question: What impact does module degradation have on system degradation and thus energy cost in utility-scale PV systems?

Factor #1:

Degradation Study

Jordan, et al. "Compendium of Photovoltaic Degradation Rates", PIPV 2016

25

Factor #3:

Building Successful Projects

JUWİ

- Bidding
- Financing
- PPA

Methodology

Model 100MW, single axis tracking, utility PV systems in PVSyst, varying irradiance, degradation rate and DC-AC power ratio

- 3 sites (high, medium, low irradiance)
- 3 annual degradation rates for modules (0.3%, 0.5%, 0.7%)
- 7 power DC-AC ratios (1:1.6)

Calculate and compare simple LCOE for systems with various module degradation (linear and nonlinear)

Linear Module Degradation

Annual System Degradation Over Project Lifetime: High Irradiance

0

Module Degradation = 0.3%

— PR=1.0

—____PR=1.2

PR=1.4

—____PR=1.5

PR=1.6

-PR=1.3

Annual System Degradation Over Project Lifetime: Medium Irradiance

Annual System Degradation Over Project Lifetime:

Low Irradiance

Equivalent Linear Lifetime Degradation

LCOE Calculation

 $LCOE = \frac{Total \, Lifecycle \, Cost}{Total \, Lifetime \, Energy \, Production}$ $= \frac{Initial \, Cost + \sum_{n=1}^{N} \frac{O\&M*(1-TaxRate)}{(1+r)^n}}{\sum_{n=1}^{N} Initial \, Production*\frac{(1-R_D)^n}{(1+r)^n}}$

Parameter	Value			
Initial Cost	\$1.125- \$1.15/Wdc			
0&M	\$14/kW/yr			
Tax Rate	30%			
Discount Rate	7.50%			
System Lifetime	30 years			

LCOE – Linear Module Degradation

High Irradiance Site

LCOE (¢/kWh)

	Annual Module Degradation Rate			Percent LCOE difference		
DC-AC Ratio	0.3%	0.5%	0.7%	0.3% vs. 0.5%	0.7% vs. 0.5%	
1	4.27	4.36	4.46	-2.0%	2.1%	
1.3	4.37	4.44	4.51	-1.4%	1.7%	
1.6	4.90	4.94	4.98	-0.8%	0.9%	

Low Irradiance Site

LCOE (¢/kWh)

	Annual Module Degradation Rate			Percent LCOE difference		
DC-AC Ratio	0.3%	0.5%	0.7%	0.3% vs. 0.5%	0.7% vs. 0.5%	
1	6.58	6.72	6.86	-2.0%	2.1%	
1.3	6.59	6.71	6.84	-1.8%	2.0%	
1.6	7.13	7.20	7.29	-1.0%	1.2%	

- LCOE changes by ~4% when annual module degradation increases from 0.3% to 0.7%
- Clipping masks degradation more with high irradiance

Nonlinear Module Degradation

Baseline 0.5% linear module degradation (high irradiance site)
Nonlinear Degradation is zero for first 9 years, 0.7% annually in subsequent years

LCOE – Nonlinear Module Degradation

LCOE (¢/kWh)

	Annual Module I	Percent LCOE Difference	
DC-AC Ratio	0.5% Linear	Nonlinear	0.5% Linear vs. Nonlinear
1	4.36	4.27	-2.0%
1.3	4.44	4.38	-1.3%
1.6	4.94	4.91	-0.7%

Variable Module Degradation

Baseline 0.5% linear module degradation (high irradiance site)

Add mismatch losses due to variable degradation: PVSyst Isc and Voc Dispersion - RMS 0.4% per year (default)

LCOE – Variable Module Degradation

juwi

LCOE (¢/kWh)

	_	Annual Module Degradation Rate			Perc	ent LCOE Differen		
DC-AC Ratio 0).5% Linea	5% Linear Variable Distribution		(0.5% vs. Variable		
1			4.36		4.4	3		1.5%
1.3			4.44		4.4	9		1.2%
1.6			4.94		4.9	7		0.6%
% Original Module Energy Output	100% 95% 90% 85% 80% 75%			Degradat	ion			
		0	5	10	15 Year	20	25	30

Summary

juwi

PV module level degradation is greater than its resulting system level degradation in single axis tracking installations with a greater-thanunity DC-AC ratio – depends on site irradiance.

Clipping can cause nonlinear variation in annual PV system degradation rates.

PV system LCOE is affected significantly by both linear and nonlinear module degradation rates and patterns even when masked by clipping.

Effect of variable module degradation on system level degradation should be further explored.

