

Incident Angle Modifier (IAM) Round Robin Updates

<u>Nicholas Riedel¹</u>, Adrián A. Santamaria Lancia¹, Mekbib Amdemeskel¹, Fabian Plag², Ingo Kröger², Lenneke H. Slooff³, Mark J. Jansen³, Anna J. Carr³, Petra Manshanden³, Martin Bliss⁴, Tom Betts⁴, Iñigo Petrina Jauregui⁵, Mikel Ezquer Mayo⁵, Jose L. Balenzategui⁶, Ruben Roldan⁷, Ulli Kräling⁸, Ghassan Baarah⁸, Daniel Zirzow⁹, Kyumin Lee⁹, Bruce King¹⁰, Josh Stein¹⁰, Cherif Kedir¹¹, John Watts¹², Kenneth Sauer¹², Sune Thorsteinsson¹, Peter B. Poulsen¹, Gisele A. dos Reis Benatto¹

Outline

- Incident angle modifier (IAM)
 - -Theory and measurement procedure
- IAM round robin history
- Results
 - -High level
 - -Delta to Fresnel
 - -Model fitting
 - -Impact on energy rating (IEC 61853)
- Conclusions

The Incidence Angle Modifier (IAM)

- When a PV device is not positioned normal to the sun, a loss of effective irradiance occurs due to **geometry** and **reflection**.
- Geometrical effect (Lambert Cosine Law)
 - Reduction of irradiance is proportional to cosine(AOI).

The Incidence Angle Modifier (IAM)

- The IAM normalizes the cosine effect to isolate reflection losses.
- IAM is obtained by measuring short circuit current (I_{sc}) over a range of AOIs (θ).
 - Normalized to the I_{SC} measured at normal incidence (AOI = 0).
 - Indoor and outdoor test procedures are stipulated in IEC 61853-2:2016

 $IAM(\theta) = \frac{I_{SC}(\theta)}{\cos(\theta) * I_{SC}(\theta^{\circ})} = \frac{Beam irrad.received by PV Device}{Total beam irrad.available to PV Device}$

DTU

International IAM Round-Robin Recap

The results from 8 European labs showed:

- Five of eight labs were comparable w/in their stated U_{C} out to $\pm80^{\circ}$ AOI [1].
- IAM measurements at $\pm 85^{\circ}$ AOI are challenging!
 - 75% range + low comparability w/in U_c .
- Two labs w/ suspect measurements due to:
 - Misalignment of DUT w/ axis of rotation.
 - Excessive reflections w/in the test bed.
- Samples w/ identical BoM were sent to these two labs for retest.
 - The two suspect IAM profiles from these labs are **not** included in this presentation.
 - 1 available retest dataset is presented instead.

[1] N. Riedel et al., 2018, Proc. of 35th EUPVSEC, 5BO.10.4

International IAM Round-Robin Recap

- In Jan. '19 the DUTs were shipped to the US.
- Only 1 of 8 European labs performed the IAM measurements outdoors.
 - Comparability of methods?
- 3 of 4 US labs performing the IAM test outdoors.
 - 2 labs have yet to measure the DUTs.
- Labs are asked to measure from ±85° in 5° steps.
- Labs asked to report:
 - IAM for each angle of incidence (AOI) $\boldsymbol{\theta}$
 - U_C (k=2) of IAM(θ)
 - Only 7 of 10 labs provided $\rm U_{\rm C}$

Devices Under Test (DUTs)

- Common characteristics among all DUTs:
 - Cell size:156 mm x 156 mm
 - Glass: 3.2 mm thick, finely textured PV glass
 - No anti-reflective coating (ARC)
 - Encapsulant: ethylene-vinyl acetate (EVA)
 - The glass edges were covered with tape
- Three different cell surface textures
 - 1. Standard mono-silicon (Mono-si)
 - mc-Si black silicon textured under reactive ion etch (RIE) treatment (Black-Si A)
 - 3. mc-Si black silicon textured under atmospheric pressure dry etching (ADE) treatment (Black-Si B)

All DUTs have the same glass, so the IAM measurements [not surprisingly] show little difference.

Only the measurements of the Mono-Si sample will be presented here.

Initial EL of mono-Si DUT

Most Recent EL of mono-Si DUT

Participating Laboratory Measurement Systems

	Automated	Manual	Total
	Rotation Stage	Rotation Stage	
Xe Flash (Pasan)	2	3	5
Sunlight	3	1	4
Halogen	1	0	1
Laser driven Xe plasma	1	0	1
Tuneable laser	1	0	1
Total	8	4	12

- Five unique light sources.
- Light sources represent different illumination levels and spectral distributions.
- Various approaches for rotating the DUTs.
 - From single cells -> mini modules -> fullsized modules.
- Two labs w/ outdoor test systems remain to measure the DUTs (end of summer '19?).
- Labs have been assigned anonymous ID#s

DTU

Comparing Measurements to Theory

- The following slides will refer to the Fresnel model.
 - This is a <u>simplified</u> approach to calculating the IAM using Snell's law and the Fresnel equations [2].
- For the single slab model (no ARC) *n2* = 1.523.
- For the two slab model (ARC) *n*2 = 1.3 and *n*3 = 1.523.
- Unpolarized light (50% p-polarized, 50% s-polarized).

 \triangle Single Slab (no ARC)

75

90

60

• Two Slab (ARC)

15

0

30

45

AOI (°)

[3] M. Rubin. Optical properties of soda lime silica glasses, Sol. Energy Mater. 1985.

Danmarks Tekniske Universitet

Results – All Labs

Results from the Mono-Si sample.

- 8 of 9 labs show IAM differences of < 2% at ±80°
 - (Symmetry requirement of IEC 61853-2)
- Lab No. 1 shows IAM symmetry of 2.3% at±80°
- If Lab 1's measurement at 85° AOI is excluded:
 - The measurement range at 85° decreases from 40% to 10%.

Results – Delta to Fresnel Model w/o ARC

 $\Delta = (IAM(\theta)_{lab} - IAM(\theta)_{Fresnel}) \cdot 100$

• Median IAM(θ) shows agreement w/in ±1% of Fresnel no ARC model out to 75° AOI.

Results – Delta to Median by Test Location

Results – Delta to Median by Light Source

Angular Loss Models

- 1. ASHRAE
 - Single parameter (b₀)
- 2. Martin and Ruiz
 - Single parameter (a_r)

$$IAM(\theta) = 1 - \frac{b_0}{\cos \theta} \left(\frac{1}{\cos \theta} - 1\right)$$

$$IAM(\theta) = \frac{1 - \exp(\cos\theta/a_r)}{1 - \exp(^{-1}/a_r)}$$

- 3. Sandia
 - 5th order polynomial fit (5 coefficients)
- 4. Physical model (DeSoto)
 - Based on Snell's and Bougher's laws.
 - Two coefficients (K and L)

Model coefficients are extracted from the measured IAM data using a Gauss-Newton fitting method.

$$IAM(\theta) = \frac{e^{-\left(\frac{KL}{\cos\theta_r}\right)} \left[1 - \frac{1}{2} \left(\frac{\sin^2\theta_r - \theta}{\sin^2\theta_r + \theta} + \frac{\tan^2\theta_r - \theta}{\tan^2\theta_r + \theta}\right)\right]}{e^{(-KL)} \left[1 - \left(\frac{1-n}{1+n}\right)^2\right]}$$
$$\theta_r = \sin^{-1}(\frac{1}{n}\sin\theta), n = 1.523$$

Model Fitting Results

Coefficients and goodness of fit summary for
ASHRAE and Martin & Ruiz models

Lab	a _r	b _o	a _r RMSE	b ₀ RMSE
1	0.221	0.089	0.073	0.016
2	0.157	0.056	0.013	0.027
3	0.155	0.053	0.025	0.035
4	0.163	0.058	0.007	0.026
5	0.169	0.059	0.007	0.028
6	0.155	0.055	0.013	0.025
7	0.149	0.052	0.019	0.028
8	0.165	0.058	0.011	0.027
9	0.178	0.062	0.008	0.033

 Table shows average a_r and b₀ coefficients from the forward (+AOI) and reverse (-AOI) measurement directions.

- Variability chart shows goodness of fit results from fitting 4 models to 9 labs' measurements of the mono-si sample.
- RMSE from fitting forward and reverse directions shown.
- Orange dots represent Lab Outdoor 1.

IAM U_c Impact on Energy Rating (IEC 61853-3)

- The climate specific energy rating (CSER) was calculated using the IAM data measured by the RR labs and IEC CDV 61853-3 procedures.
- DTU measured spectral response (SR), multi-G (@25°C) and multi-T (@1000 W/m²).
- Assumptions made for U_0 and U_1 based on [4].
 - $U_0 = 26 \text{ W/m}^2 \cdot \text{K}, U_1 = 6 \text{ W} \cdot \text{s/m}^3 \cdot \text{K}$
- All calculations done for South facing 20° tilt.

[4] M. Koehl et al. Modeling of the NOCT based on outdoor weathering. Sol. Energy Mater. Sol. 2011

IAM U_c Impact on Energy Rating (IEC 61853-3)

Climate Specific Energy Rating (CSER) = module performance ratio (MPR)

$$CSER = rac{EY \cdot 1000 \left[rac{W}{m^2}
ight]}{P_{STC} \cdot H}$$

 $EY = Annual energy yield [Wh] \\ H = Annual insolation in array plane [Wh/m²] \\ P_{STC} = Power at STC [W]$

Data Set	Lat./Long.	Climate
1	38° N, 3° W	Mediterranean
2	48° N, 12° E	Temperate continental
3	54° N, 24° E	Continental (Central Europe)
4	56° N, 4° W	Temperate coastal

The four reference climates suggested by [5].

[5] T. Huld et al., PV energy rating datasets for Europe, Sol. Energy. 2016.

DTU

IAM U_c Impact on Energy Rating (IEC 61853-3)

- When the reported IAM measurements are used to calculate CSER:
- CSER varies by **0.9-1.2%**
 - If lab 1 is excluded
- CSER varies by 2.3-3.5%
 - if lab 1 is included.

-Red dot below lower whisker represents lab 1.

Conclusions

- Improved agreement in IAM measurements compared to 2018 RR results.
 - Retests and filtering of suspect measurement profiles.
- Differences in robust IAM measurements from 8 international laboratories cause ~1% difference in climate specific energy rating.
- Median IAM agrees w/in $\pm 1\%$ of Fresnel model when AOI $\leq 75^{\circ}$
 - The simple Fresnel model can be reasonably used in this range as a sanity check when measuring DUTs with smooth glass.
 - **To Do**: Calculate angular losses via ray trace simulations w/ ISFH.
- IAM results not dependent on type of measurement system used.
 - Suggests that experience can count for something.

Thank you!

¹Department of Photonics Engineering, Technical University of Denmark (DTU), Roskilde, Denmark

²Physikalisch Technische Bundesanstalt (PTB), Braunschweig, Germany

³Energy Research Centre of the Netherlands (ECN>TNO), Petten, The Netherlands

⁴Centre for Renewable Energy Systems Technology (CREST), Loughborough University, Loughborough, UK

⁵Spanish National Renewable Energy Centre (CENER), Sarriguren (Navarra), Spain

⁶CIEMAT, Department of Energy, Madrid, Spain

⁷University of Applied Sciences and Arts of Southern Switzerland, (SUPSI - ISAAC), Canobbio, Switzerland ⁸Fraunhofer Institute for Solar Energy Systems ISE, CalLab PV Modules, Freiburg, Germany

⁹ CFV Solar Test Laboratory, Albuquerque, NM, USA

¹⁰ Sandia National Laboratories, Albuquerque, NM, USA

¹¹ Renewable Energy Test Center (RETC), Fremont, CA, USA

¹² PV Evolution Labs (PVEL), Berkeley , CA, USA