

Strategies for Rear Irradiance Monitoring in Tracked Bifacial Systems

Nicholas Riedel-Lyngskær¹, Nanna Andersen², Peter Poulsen²

¹European Energy A/S, Søborg, Denmark ²Technical Universtiy of Denmark, Roskilde, Denmark

2023 PV Performance Modeling Workshop Salt Lake City, Utah

European Energy Company Overview

- Danish developer of utility-scale PV and wind projects since 2004
- PV projects and offices in ~20 countries.
- 3 GW installed, 1.2 GW in construction
- Since 2019, all PV projects are bifacial

https://europeanenergy.com/

• R_{POA} sensors should be mounted at same tilt angle as the modules (directly on module racking), while minimizing module shading.

- R_{POA} sensors should be mounted at same tilt angle as the modules (directly on module racking), while minimizing module shading.
- R_{POA} sensors should be positioned as to avoid end-row brightening, localized shading, or enhanced illumination phenomena.

Simulated midday R_{POA} on 1P tracker in Denmark, on cloudy and clear days near summer solstice (height = 1.6 m).

- R_{POA} sensors should be mounted at same tilt angle as the modules (directly on module racking), while minimizing module shading.
- R_{POA} sensors should be positioned as to avoid end-row brightening, localized shading, or enhanced illumination phenomena.
- Multiple R_{POA} sensors should be installed to measure the nonuniform illumination throughout the day.
 - Provides an 'effective average R_{POA} ' for performance equations.

- R_{POA} sensors should be mounted at same tilt angle as the modules (directly on module racking), while minimizing module shading.
- R_{POA} sensors should be positioned as to avoid end-row brightening, localized shading, or enhanced illumination phenomena.
- Multiple R_{POA} sensors should be installed to measure the nonuniform illumination throughout the day.
 - Provides an 'effective average R_{POA} ' for performance equations.
- + For Class A systems, N $\rm R_{POA}$ sensors depends on system size.
 - For example, 9 R_{POA} sensors for 50 MWp.

Motivation

- IEC 61724-1 does not give precise recommendations for R_{POA} sensor locations.
 - Understandable since R_{POA} non-uniformity depends on structural design, site albedo, solar resource/position.

Motivation

- IEC 61724-1 does not give precise recommendations for R_{POA} sensor locations.
 - Understandable since R_{POA} non-uniformity depends on structural design, site albedo, solar resource/position.
- Is there a single R_{POA} sensor position that is representative of the long-term average on single-axis trackers (SATs) ?
 - We know to avoid sensors on edge modules, but what about E-W positions?

Motivation

- IEC 61724-1 does not give precise recommendations for R_{POA} sensor locations.
 - Understandable since R_{POA} non-uniformity depends on structural design, site albedo, solar resource/position.
- Is there a single R_{POA} sensor position that is representative of the long-term average on single-axis trackers (SATs) ?
 - We know to avoid sensors on edge modules, but what about E-W positions?
- IEA PVPS 13 subtask 2.3 working on *Bifacial Tracking Systems* report (Q4-2024).
 - Subsection on Instrumentation best practices for performance monitoring

- Ray trace simulations of 3 common SAT designs using *bifacial_radiance*.¹
 - 1 module in portrait (1P),
 - 2 modules in portrait (2P)
 - 2P with gap $(2P_{Gap})$

*all three systems have 80 cm clearance when surface_tilt=±60°

• Annual simulations of 3 systems at 795 locations using the Cumulative Sky method.¹

- Hourly meteo data retrieved from EnergyPlus Weather (EPW) database.²
- Diurnal broadband albedo (ρ) data derived from MODIS MCD43GF black sky (BSA) and white sky (WSA) spectral albedo. 3,4

[1] Robinson, D., & Stone, A. (2004). Irradiation modelling made simple

[2] https://climate.onebuilding.org/

[3] https://lpdaac.usgs.gov/products/mcd43gfv006/

[4] Blanc, P. et al., (2014). Twelve monthly maps of ground Albedo parameters derived from MODIS data sets.

- Annual simulations of 3 systems at 795 locations using the Cumulative Sky method.¹
 - Hourly meteo data retrieved from EnergyPlus Weather (EPW) database.²
 - Diurnal broadband albedo (ρ) data derived from MODIS MCD43GF black sky (BSA) and white sky (WSA) spectral albedo. 3,4

EUROPEAN

[1] Robinson, D., & Stone, A. (2004). Irradiation modelling made simple

[2] https://climate.onebuilding.org/

[3] https://lpdaac.usgs.gov/products/mcd43gfv006/

[4] Blanc, P. et al., (2014). Twelve monthly maps of ground Albedo parameters derived from MODIS data sets.

- Annual simulations of 3 systems at 795 locations using the Cumulative Sky method.¹
 - Hourly meteo data retrieved from EnergyPlus Weather (EPW) database.²
 - Diurnal broadband albedo (ρ) data derived from MODIS MCD43GF black sky (BSA) and white sky (WSA) spectral albedo.^{3,4}

Map of locations studied

EUROPEAN ENERGY

[1] Robinson, D., & Stone, A. (2004). Irradiation modelling made simple

[2] https://climate.onebuilding.org/

[3] https://lpdaac.usgs.gov/products/mcd43gfv006/

[4] Blanc, P. et al., (2014). Twelve monthly maps of ground Albedo parameters derived from MODIS data sets.

Simulation Details

- We only considered the *center* module of the *middle* tracker in a 5 row system.
 - GCR = 0.43 (flat terrain)
 - Large area PV modules (2.1 x 1.3 m),
 - square torque tube (15 x 15 cm) with 11 cm distance to PV module (z-gap)
 - Standard backtracking with ±60° limit

Aerial view of 1P scene

Results: Bifacial Energy Gain

Mean albedo of 795 locations
= 0.16 ±0.05 (1σ)

System	Mean BEG (%)	Std Dev (%)
1P	4.42	1.09
2P	4.26	1.05
2P_Gap	5.59	1.54

$$BEG = \frac{BF \cdot R_{POA}}{G_{POA}} * 100$$

BF = 0.7

*Average albedo may be lower than the 0.2 assumption because many EPW stations are near urban centers. EUROPEAN

Example Results: 1P system in SLC, Utah (40.77° N, 111.97° W)

- R_{POA} sensors considered at 20 equidistant locations on the backside POA, plus one sensor on the torque tube.
- Torque tube sensor is displaced by 26 cm from the backside POA.

Example Results: 1P system in SLC, Utah (40.77° N, 111.97° W)

- At this location, sensors at/near -55% and +45% from the torque tube give best match to the long-term $R_{\rm POA}$ average.
- Notably, a sensor on the torque tube is within 2% of the R_{POA} average.

Results from 1P system simulated at 795 locations

- On torque tube and ±50% from torque tube agree best to average.
- These points are w/in 3% of mean R_{POA} for 50% of sites studied.

Results from 1P, 2P and $2P_{Gap}$ systems at 795 locations

- 30 15 Ē -一 一 σ T -15 Deviation from Mean Rpoa (%) -30 -45 30 15 System 2P - 占-÷ 百 白 -15 峊 -30 -45 30 15 σ Ð 0 -自 Gap 亘 þ 旦 巨 -15 -30 -45 Eas 100% 00% East West
- 2P has nearly the same results as 1P:
 - ±50% / ±60%
- 2P_{Gap} is unique, with narrower and wider R_{POA} positions than 1P/2P:
 - ±10% from tube
 - 50%–70% from tube

19

Distribution of single R_{POA} sensor positions that best represent average R_{POA}

- 795 locations shown here.
- Causal analysis for why results are sometimes different across locations, still not clear.
 - We've checked correlations with: Albedo, latitude (average AOI), and solar resource.

Rpoa position best matched to average

ENERG

Effect of R_{POA} sensor placement on bifacial performance ratios (2 P_{Gap} example)

Validation with 2P_{Gap} system at DTU Risø (55.7°N, 12.1°E)

- 2 Mini modules with ten isolated cSi cells used to study nonuniformity on 2P_{Gap}.¹
- 8 months of electrical, G_{POA} and R_{POA} data used to calculate $\text{PR}_{\text{BIFI}}.$

EUROPEAN ENERGY

Validation with $2P_{Gap}$ system at DTU Risø (55.7°N, 12.1°E)

 High-res R_{POA} measurements show
60% from torque tube gives best match to average PR_{BIFI}.

$$PR_{Bifacial} = \frac{Y_f}{Y_r \cdot BIF}$$
$$BIF = \left(1 + BF \cdot \frac{R_{POA}}{R_{POA}}\right)$$

G_{POA} /

 ${\sf PR}_{\sf BIFI}$ calculated over 8 months using ${\sf R}_{\sf POA}$ from ten cSi cell locations and DC ${\sf P}_{\sf MAX}$ data from 6.5 kWp string. Error bars show 95% CI of mean using hourly ${\sf PR}_{\sf BIFI}$.

UROPEAN

ENERG

Conclusions

When assessing bifacial performance on *annual* time scales...

- 1P systems are the only structure where $R_{\rm POA}$ sensor placement on the torque tube appears to be a good idea.
- For 1P and 2P, R_{POA} sensors at ±50% from torque tube are within 5% of the average R_{POA} , at 70% of the locations studied.
 - For 2P_{Gap} systems, a wider sensor placement (60%–70%) is required for < 5% error.
- Bifacial PR can be biased by ~2.5% if an $R_{\rm POA}$ sensor is placed anywhere on SAT.
 - This can be reduced if positions specific to 1P, 2P and 2P_{Gap} systems are selected.

Thank You!

APPENDIX SLIDES

Effect of R_{POA} sensor placement on bifacial performance ratios

Broadband Albedo from MODIS spectral albedo

- For each location, collect monthly black sky and white sky spectral albedo from MODIS MCD43GF
 - Use data reported at the middle of the month
- Average the 7 spectral BSA and WSA bands to get average BSA and WSA.
- Using DNI and GHI data from the EPW file, calculate albedo (ρ):

•
$$\rho = WSA + \frac{DNI \cdot \cos(SZA)}{GHI} \cdot (BSA - WSA)$$

Example spectral albedo curve sampled at 7 MODIS wavelength channels (red points).

- R_{POA} sensors considered at 20 equidistant locations in POA, plus one on the torque tube.
 - Placed across the middle module within a 22 module string.

