Quality assessment of global tilted irradiance by automatic and manual procedures

Marketa Hulik Jansova, Maria Dzamova, Martin Jakubik, Jozef Dudzak

Why ground measurements

Ground measurements are essential asset for development and operation of PV plant

Usage of ground measurements

- Improvement of satellite-based model
- Improvement of forecast accuracy
- PV performance evaluation
- Identification of PV operation issues

About ground measurements

Current status (our experience)

- Missing knowledge of proper operation
- Suboptimal practices
- Solar and meteo measurements are often degraded

Best practices

- More than one instrument on a site (if feasible)
- Choice of high quality instruments
- Fine temporal resolution of data (1min, 5 min)
- Regular cleaning, maintenance and calibration of instruments by trained personnel
- Data quality assessment by a knowledgeable expert

Ground measured GTI

Every bigger power plant - typically several GTI instruments

Global tilted irradiance (GTI) data used for

- PV performance evaluation
- Validation and site-adaptation of solar models

Photo: GeoSUN Africa

Ground measured GTI

High quality GTI ground measurements are needed for reliable PV performance evaluation (raw measured data \rightarrow reference data)

From our research \rightarrow there is not much knowledge, standards and procedures for GTI QC

- What we have
 - Existing public knowledge about GTI QC
 - Experience with GTI
 - Existing methods and procedures for global, direct normal and diffuse irradiation (GHI, DNI, DIF)

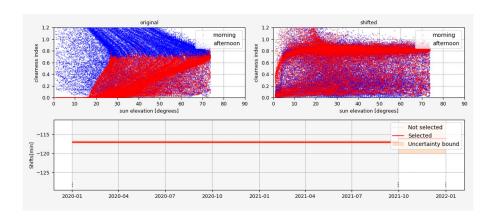
Solargis quality assessment procedure (GHI, DNI, DIF)

- Step 1: Time reference control
- Step 2: Automated test of unphysical values
 - o minima, maxima, static values, night values, 2-component tests, consistency tests
- Step 3: (Semi-)automated tests for systematic data errors
 - o shading, degradation, dew/frost, pyrheliometer tracker malfunction, instrument misalignment
- Step 4: Visual quality assessment

Solargis quality assessment procedure (GTI)

Methods and procedures can be largely reused but additional complexity

- Fixed vs tracker mounting
- Inherited PV features (e.g. parking/stowing position)
- Tracking configuration
- Partial sky-dome and reflected component (albedo)

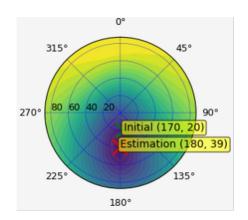



Time reference check

- Time reference needs to be in UTC
 - \circ \rightarrow determines the solar position calculation
- Prerequisite for data quality tests

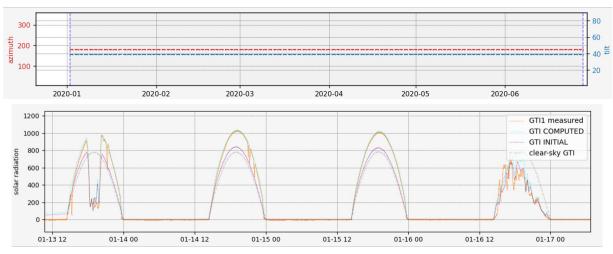
Detection

- Look at when day begins and ends or profile symmetry
- Similar logic can be used for GTI measurements



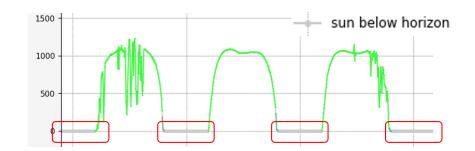
Instrument configuration check

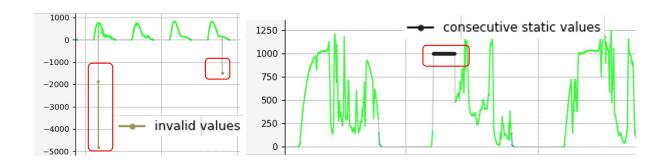
GHI configuration is given but instrument can be misaligned


Additional complexity for GTI

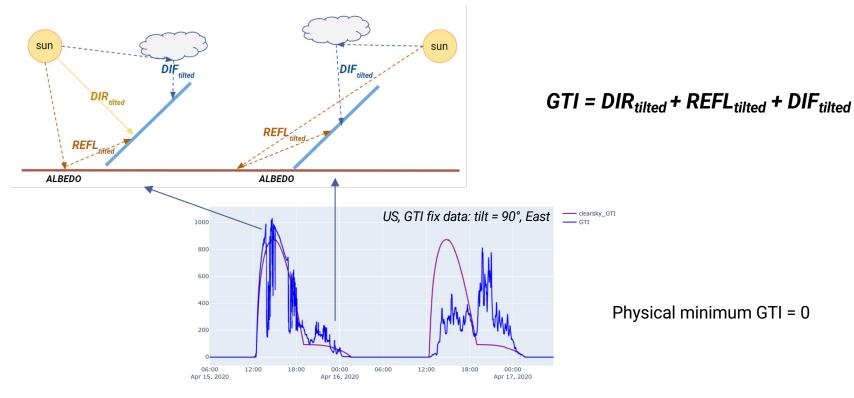
- Fix vs tracker (1 or 2-axis)
- Fixed systems: Azimuth, tilt
- Tracker: Rotational limits, backtracking, (azimuth, tilt)

Detection


Multidimensional fit

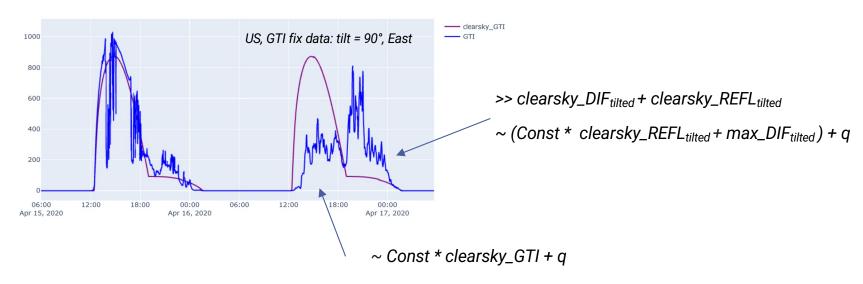

Basic automated test of unphysical values

- Invalid values
- Sun below horizon
- Consecutive static values


Detection

No difference between GHI and GTI tests

Physical maxima and minima


Direct tilted irradiation DIR_{tilted} = DNI * cos(incidence_angle)

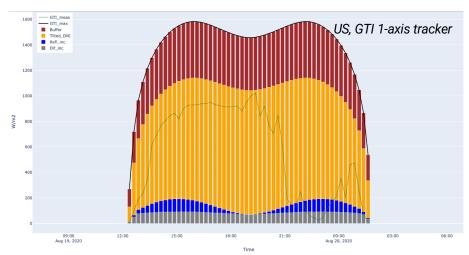
Reflected tilted irradiation $REFL_{tilted} = ALB * GHI * refl_transposition_factor$

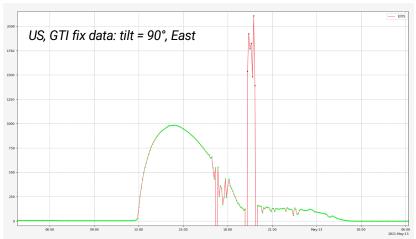
Diffuse tilted irradiation $DIF_{tilted} = DIF * diffuse_transposition_factor$

PVPMC Salt Lake City 2023

Physical maxima

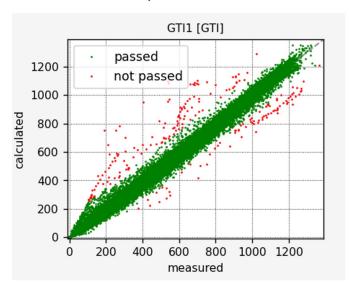



GTI specifics to take into account

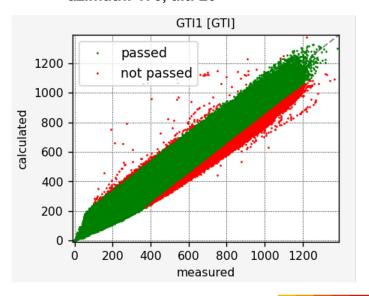

- Albedo variability snow, grass, sand, ... \rightarrow need to take maximalist value
- Configuration mistake → we vary incidence angle
- High diffuse radiation part

Similar logic for fix and tracker systems

Physical maxima



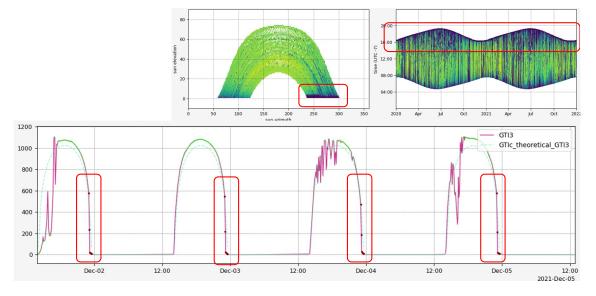
PVPMC Salt Lake City 2023


2-component tests and consistency

- No "classical" consistency tests as for DNI, GHI and DIF (GHI = DIF + DNI * cos(z))
- But GTI can be calculated from other solar radiation parameters (e.g. GHI)

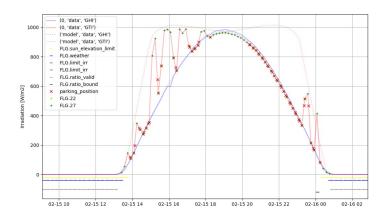
consistency correct config: azimuth: 180, tilt: 40

consistency wrong config: azimuth: 170, tilt: 20


z = solar zenith angle

Semi-automated and visual assessment

- Shading
 - semi-automated
 - GHI approach can be reused (data separation in azimuth/elevation plane)
- Dew/frost
 - semi-automated
 - GHI approach can be reused in limited way (detection of characteristic S-shape)
- Degradation (insufficient cleaning, calibration issue)
 - Visual assessment
- Other issues logger issues, bird droppings, issues which cannot be categorized
 - Visual assessment





Semi-automated and visual assessment

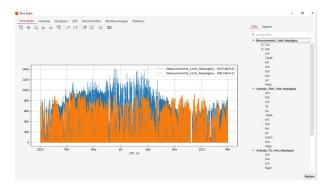
There are issues which are specific only for $GTI \rightarrow typically$ they arise from the instrument installation

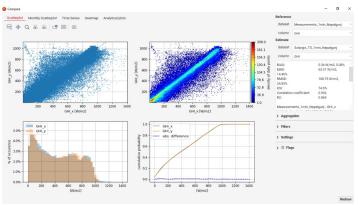
- Parking position and tracker malfunction
 - Detection is based on deviation from satellite-based data
- Row spacing, rotational limits, ...
 - Detection via configuration check fit

tracker in parking position

Supporting methods for quality assessment

- Parameter type detection
- Swapped columns detection
- Units detection
- Multi-instrument analysis
- Coordinates detection


Solargis Analyst



Desktop software specifically designed for solar data assessment needs in the PV community

- Quality assessment of data
- Data management
- Visualisation
- Analysis of measured and model data

Introduced tools for quality assessment of solar data are being gradually integrated into Solargis Analyst

Conclusion

- Global tilted irradiance ground measurements are widely used for PV performance evaluation
- But these measurements suffer from many issues and poor maintenance
- The GTI measurements need to undergo strict quality assessment → accurate PV performance
- There is a lack of tools, standards and procedures for GTI QC but they can be developed

Thank you

Backup

Data source: https://midcdmz.nrel.gov/apps/sitehome.pl?site=BMS

NREL Solar Radiation Research Laboratory

Baseline Measurement System

Latitude: 39.742° North

Longitude: 105.18° West

Elevation: 1828.8 meters AMSL

