

Seasonal and weather dependency of the spectral influence on PV performance

Rajiv Daxini, Yupeng Wu

Faculty of Engineering, University of Nottingham, United Kingdom Rajiv.Daxini@nottingham.ac.uk

Introduction

- Spectral variation \rightarrow up to 14% sensitivity even for crystalline silicon [1]
- Climate variation \rightarrow > 5% absolute change in annual MMF [2]
- \blacktriangleright Existing work \rightarrow lacking on specific weather conditions and implications for PVPM
- \blacktriangleright This study \rightarrow clear and dynamic sky analysis, seasonal trends, optimised MMF modelling

Methods

• aSi

Fig. 1: Nottingham test rig

Results 1: Spectral influence on PV

06:00 00:80 10:00 12:00 14:00 16:00 18:00 Time of day

Fig. 4: Daily variation in *G*_{poa}.

Ref Dep. vari	able Type
[3] AM_a [4] AM_a , [5] φ [6] $\varphi \in \delta$	<i>K_t</i> Proxy Direct

Table 2: SCFs analysed

• G_{poa}, φ , etc. used to define sky conditions 1-min I_{sc} ; 5-sec G_{poa} , T_{amb} , T_{mod} ; 30-sec E_{λ} ► AOI, T_{cell} , G_{poa} correction for I_{scn} ► $1 \le AM_a \le 15$, $G_{poa} > 10 W m^{-2}$

SCF recommendations

- Summer $C \rightarrow D$: $I_{scn} \downarrow$ for aSi, \uparrow for mSi

	Dynamic $S \rightarrow W$:	I _{scn} 1	Tor asi,	stable	tor mS	
--	-----------------------------	--------------------	----------	--------	--------	--

• Winter $C \rightarrow D$: $I_{scn} \uparrow$ for aSi, \uparrow for mSi

	Clear		Dynamic	
	S	W	S	W
mSi	0.973	1.001	1.054	1.041
aSi	1.043	1.050	0.926	1.173
CdTe	1.007	-	0.911	-

Table 1: Median *I_{scn}* values in summer (S) and winter (W), under different sky conditions

mSiCdTe

mSiaSi

Results 2: Optimised MMF modelling

- Second variable decreases fitting uncertainty
- Higher responsivity of di-

	u	1	u	1
CdTe	arphi, $arepsilon$	-	arphi, $arepsilon$	-
mSi	AM _a	arphi	arphi, $arepsilon$	arphi

Table 3: Optimal SCF choices according to R^2

- Proxy AM_a adequate for summer/clear
- Outlier summer/dynamic aSi; overfitting?
- CdTe needs a direct spectral parameter
- Winter \rightarrow Direct; Summer \rightarrow Proxy/direct
- Dynamic skies require a more responsive spectral parameter

Conclusion

- Median efficiency varies by up to 9% be-tween seasons and sky conditions
- Time-of-day error in 1-variable SCFs
- Proxy variable for summer clear skies (mSi and aSi), direct variable for CdTe
- $\blacktriangleright \varphi$ recommended in winter
- Extension to predictive model analysis re-quired in future work

(a) $f(AM_a)$ (clear S)

AMa

rect parameters is better for dynamic conditions

> Sub-optimal SCF choice to 90% loss can lead (ΔR^2) 0.9) in fitting \approx accuracy for the same PV panel in different seasons/conditions

AM_a=Absolute air Note: mass, K_t =Clearness index, φ =Average photon energy, ε =650–670nm band depth

Acknowledgements

This work was supported by travel grants awarded to Rajiv Daxini by the UoN Faculty of Engineering and the SUPER-GEN SuperSolar network.

References

Kinsey, et al., Ren. Ener. 196 (2022) 995–1016. Schweiger, et al., IET R.P.G. 11 (2017) 558–565. [2] King, et al., in: PVSC, 1997, pp. 1113–1116. [3] Pelland, et al., in: PVSC, 2020, pp. 1258–1264. [4] Daxini, et al., Ren. Ener. 201 (2022) 1176–1188. [5] Daxini, et al., Preprint SSRN 4378056 (2023). [6]

Fig. 3: Example SCF fitting results

(d) $f(\varphi, \varepsilon)$ (dynamic W)

e (Wm⁻