

Validation of PVcase Yield -A yield simulation software based on 3D PV plant digital twins

A. Calcabrini, A. Dučinskas, I. T. Horvath

We are PVcase

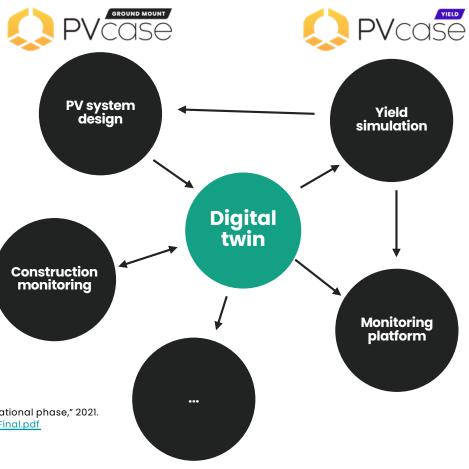
Our focus is on **automation** and **accuracy** from the earliest stages of planning, incorporating **3D topographical data** points to simulate the actual location of the solar plant. This allows our customers to be able to compete for and **win more projects** by delivering greater yields. Our products are AutoCAD and Cloud based tools allowing seamless integration into our customer's design process.

500 GW+

Projects designed per quarter

800+ Customers

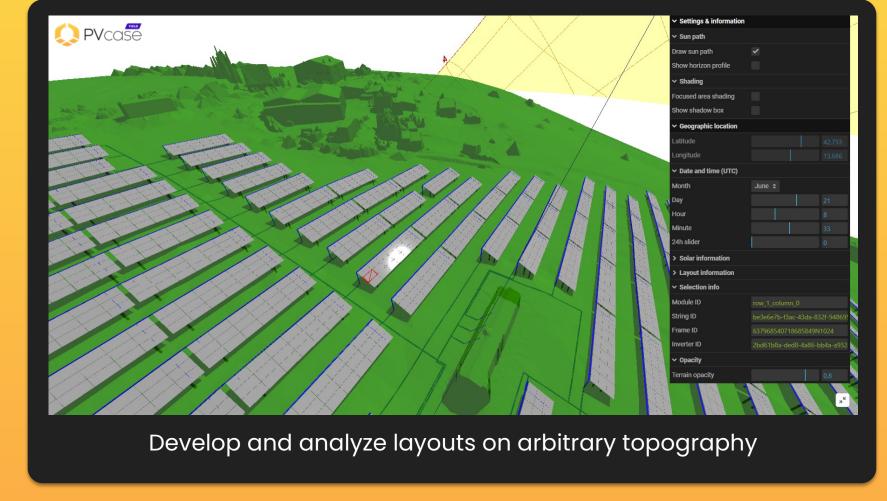
60+ Countries

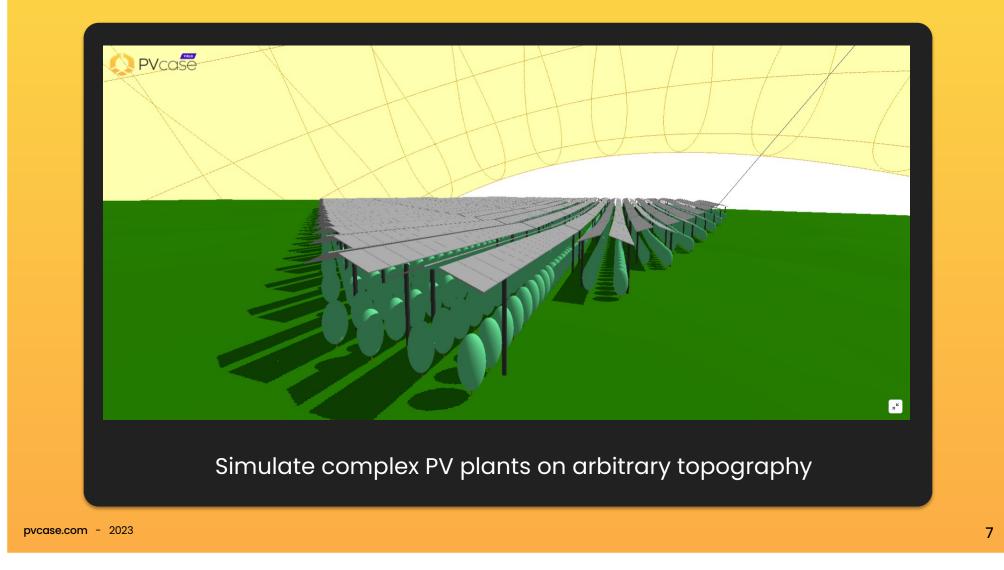

12 Employee locations

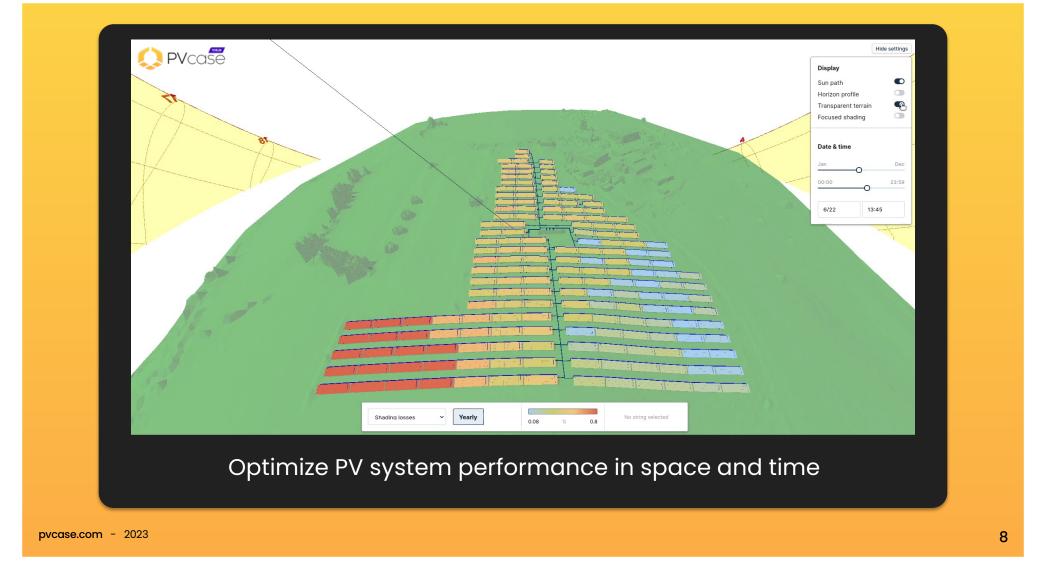
AGENDA

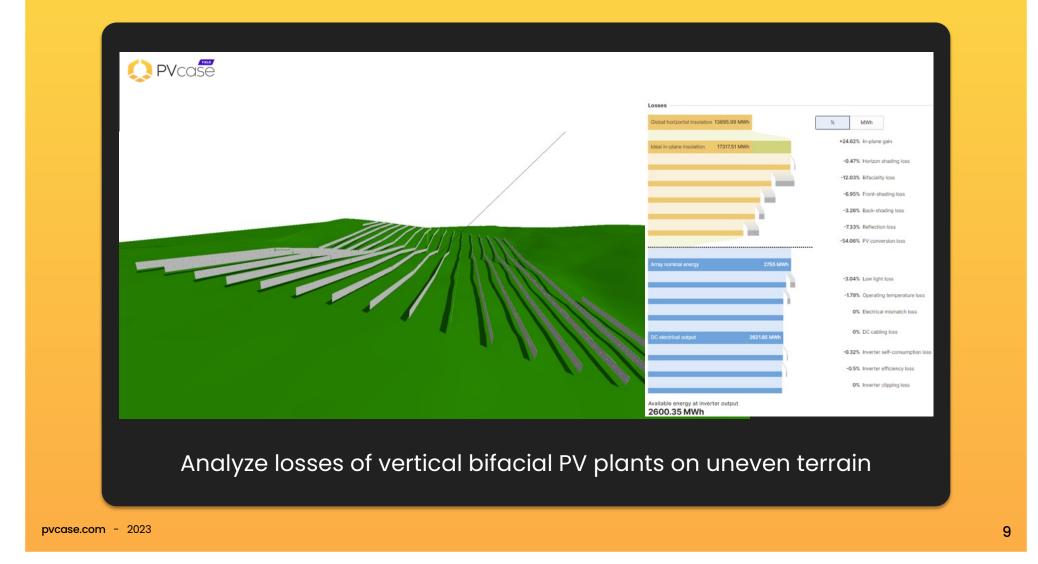
01	Digital twin-based software ecosystem
02	Introduction to PVcase Yield
03	Accuracy evaluation study

A common information model integrates different services

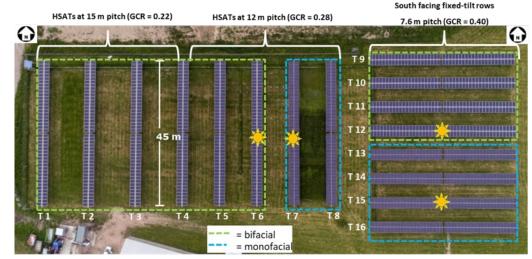

- Parametrized virtual model containing physical information of a real PV plant
- Integration interface between different platforms and processes
- Asset information is preserved, reused and updated in version control system



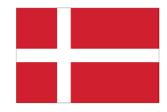

TRUST-PV consortium, "Building Information Model (BIM) requirements and design for the operational phase," 2021. [Online]. Available: <u>https://trust-pv.eu/wp-content/uploads/2021/10/TRUST-PV_T3p4_report_Final.pdf</u>


TRUST-PV consortium, " Automated PV digital twin-based yield simulation framework", 2022

PVcase Yield: the next-gen yield simulation software

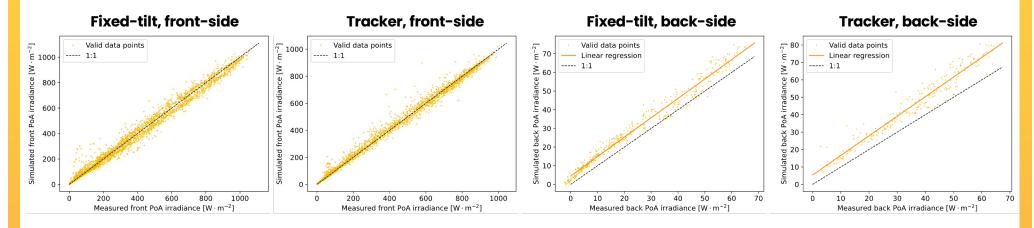


← Back to home	0	ngoing Calculations				
Project Agri_PV demo		Calculation type Detailed (manual electrical)	Layout Agri_PV_00_Solitek_vertical_plan	Module SoliTak Solid Bifacial 360W B60	Inverter	
Summary		Detailed (manual electrical)	ts_export	Source, Source Bracial Source Boo	95KTL-INH0	
PROJECT PARAMETERS						
ý: Meteo	#2	2 Calculation type Detailed (manual electrical)	Layout Agri_PV_00_Solitek_vertical_plan	Module SoliTek Solid AGRO 240 W B40	Inverter Huawei Technologies SUN2000-	
			ts_export		95KTL-INH0	
奇 Grid []]] Layouts & Electrical						
	#3	3 Calculation type Detailed (manual electrical)		Module SoliTek Solid Bifacial 360W B60	Inverter Huawei Technologies SUN2000-	
Ongoing calculations					95KTL-INH0	
Results	#4	Calculation type Detailed (manual electrical)		Module SoliTek Solid AGRO 240 W B40	Invertar Huawei Technologies SUN2000- 9SKTL-INH0	
	#5	5 Calculation type Detailed (manual electrical)		Module SoliTek Solid Bifacial 360W B60	Inverter Huawei Technologies SUN2000- 9SKTL-INHO	
Give feedback	#0	Galculation type Detailed (manual electrical)		Module SoliTek Solid AGRO 240 W B40	Inverter Huswei Technologies SUN2000- 95KTL-INH0	
Ask us a question	-					
Run cor	ncurrent simula	tions in tl	ne Cloud	l while w	orkina on o'	ther tas
Kurreor						the tas

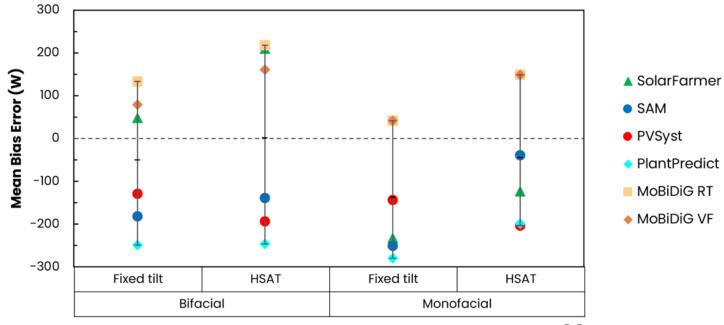

How accurate is PVcase Yield?

Public, high quality PV performance datasets (input + output)

- Denmark Technical University (DTU)*
 - o Denmark
 - o 4 systems combining: Fixed tilt, HSAT, Monofacial, and Bifacial
 - Hourly data for 1 year: In-plane irradiance (front & back), module temperature, DC power
 - Additional system losses fairly objectively determined


*Riedel-Lyngskær, Nicholas et al., *Appl. Sci.,* **2022** 10(23); DOI: <u>10.11583/DTU.13580759.v3</u> pvcase.com - 2023

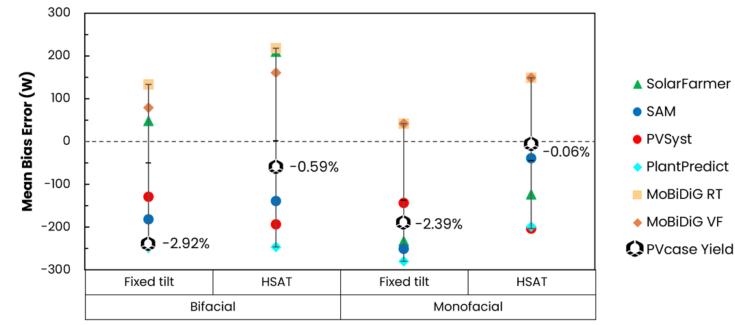
DTU: irradiance and temperature simulations closely match measurements


o Compare to in-plane pyranometer measurements: switch off angular reflection model

- Front-side: very high accuracy
- Back-side: 5 7 W/m² overestimation
 - Higher relative uncertainty for back-side pyranometer measurements

• On average, **module temperature** is underestimated by 2.7°C (monofacial tracker data)

DTU: yield estimations are comparable to other software


Based on Figure 10 in **[1]**

[1] Riedel-Lyngskær, Nicholas, et al, *Appl. Sci.,* **2020** 10(23); <u>https://doi.org/10.3390/app10238487</u> pvcase.com - 2023

DTU: yield estimations are comparable to other software

o PVcase Yield

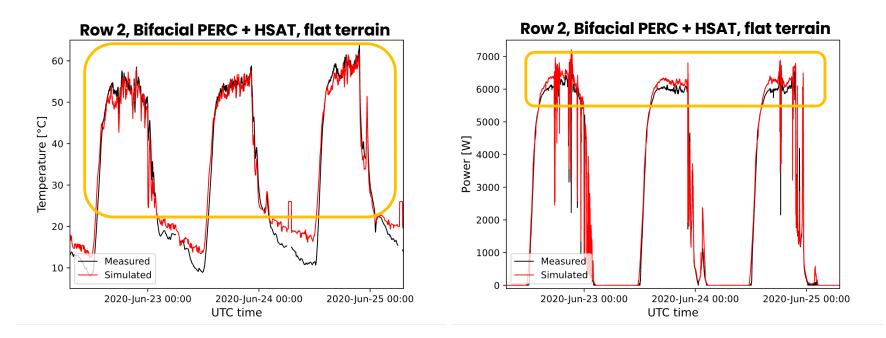
0

Tendency of being conservative, within range of other software tested in [1]

Based on Figure 10 in [1]

[1] Riedel-Lyngskær, Nicholas, et al, *Appl. Sci.,* **2020** 10(23); <u>https://doi.org/10.3390/app10238487</u> pvcase.com - 2023

Public, high quality PV performance datasets (input + output)


- National Renewable Energy Laboratory (NREL)**
 - o Golden, CO, USA
 - o B.E.S.T. field: Bifacial and Monofacial on HSAT
 - **Minutely** data for 2 years: In-plane irradiance (front & back), module temperature, DC power
 - Additional system losses. Roughly estimated in 5% but excluded from the results.

Ovaitt, S. and Deline, C. **2022, Available: <u>https://datahub.duramat.org/dataset/best-field-data</u> pvcase.com - 2023

NREL: 1-minute resolution temperature and power time series

• High temperature estimation accuracy during daylight hours

• Power **overestimation** in the order of magnitude of the expected system losses.

NREL: irradiance and temperature simulations closely match measurements

 At 1 minute resolution, irradiance estimation accuracy remains within measurement uncertainty on both front- and back sides

• • • • • • • • • • • • • • • • • • • •					
Row	Technology	Year	NMBE (%)		
2	Bifacial PERC	2020	-2.2		
2		2021	-2.4		
4	Monofacial PERC	2021	1.1		
9	Bifacial	2020	1.1		
9	HJT	2021	-0.5		

HSAT, front-side

Pyranometer measurement: reflection model OFF

• Module temperature estimation

• Minor bias is observed: -0.9 ... 2.8°C.

pvcase.com - 2023

njai, buck-side					
Row	Technology	Year	NMBE (%)		
2	Bifacial PERC	2020	-2.0		
Z		2021	3.6		
9	Bifacial	2020	-9.0		
ฮ	HJT	2021	-3.7		

HSAT, back-side

Average of 4 reference cells: reflection model ON

NREL: yield accuracy is within the uncertainty range of system losses

• When **excluding additional system losses** a tendency towards overestimation is observed

Row	Technology	Year	NMBE (%)
2	Bifacial PERC	2020	5.5
2		2021	6.9
4	Monofacial PERC	2021	-1.7
9	Bifacial HJT	2020	4.7
9		2021	7.2

Conclusions

Conclusions

- **3D digital twin-based** software ecosystem has the potential to
 - Solve many of today's PV simulation challenges through enabling 3D ray tracing
 - Reduce the cost and increase the value of digital PV services across the lifecycle
- PVcase Ground Mount + Yield: flexibly model various, complex PV systems with efficiency, accuracy and ease
- Metrics on analysed datasets, combining **monofacial**, **bifacial**, **tracker** and **fixed-tilt**
 - Irradiance simulation error is -2.4% ... +1.1% (front) and -9% ... +3.6% (back)
 - **Module temperature** simulation error is -2.9°C ... +2.8°C
 - When additional system losses are objectively determined (DTU dataset), DC Yield simulation error is -3.5% ... -1.4%
- Going forward: the **availability** of **high-quality datasets** will be crucial
 - Measured on large ground- and roof-mounted installations

Thank you!

Andres Calcabrini

R&D specialist andres.c@pvcase.com

Scan to learn more about PVcase