

## Impacts of Albedo Estimation Method on Energy Estimates

Halley Darling, Renn Darawali, Lucila D. Tafur May 10, 2023

Safety. Science. Transformation.™

© 2023 UL LLC. All Rights Reserved.



## Agenda

- 1. Background and Motivation
- 2. Albedo Measurement and Modeling
- 3. Sample Locations
- 4. Energy Modeling Assumptions
- 5. Results
- 6. Conclusions
- 7. Future Work

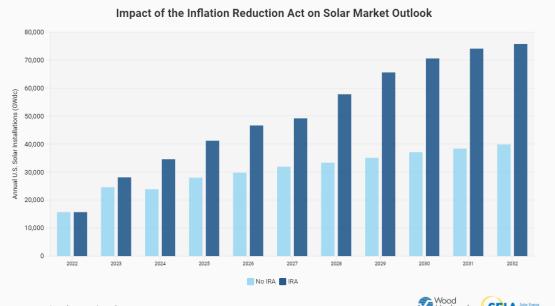


# Background and Motivation





## Albedo


- Albedo is the ratio of reflected solar irradiance over global irradiance and depends heavily on the reflectivity of the surface material
- Typical ranges are 0.15-0.20 for darker soil, 0.20-0.30 for very light soil, 0.20-0.25 for vegetation, and up to ~0.75-0.85 for fresh snow
- Albedo can have a significant effect on bifacial energy; Albedo<sub>inc</sub> is the incident irradiation on the back of the panel,  $\rho$  is the ground surface albedo under the panel, and  $\theta$  is the angle of the panel

$$Albedo_{inc} \left[\frac{W}{m^2}\right] = \rho \cdot GHI \cdot \frac{1 - \cos\left(\theta\right)}{2}$$





#### Inflation Reduction Act (2022) Impacts on Solar Installations









## **Motivation**

- How much difference do different sources of annualized albedo produce?
- Given different albedo estimates, how much does a generic bifacial project vary in energy?
- Is there a relationship between differences in albedo and the resulting difference in energy?
- Do on-site measurements capture typical long-term albedo conditions?



## Albedo Measurement and Modeling





## **Satellite Modeled Albedo**

- Services offering solar resource modeling from satellite sources have begun to offer albedo estimates as well in the last few years
- Each provider uses custom algorithms for albedo modeling, often involving imagery resolutions of 1-4km, and historical and modeled snow fall timeseries data
- Satellite modeling can offer long-term solar resource (20+ years) at hourly or finer temporal resolutions; however, albedo statistics are generally reported as monthly (typical/average year or specific years)
- This study tests PVsyst albedo default of 0.20, 3 monthly average albedo sources (A, B, C) and a monthly average of all three models
- Additionally, IAV statistics are generated from 2 timeseries based albedo datasets (Models 1 and 2)



## **Solar Meteorological Stations (SMS)**

- SMS are used to obtain point location solar resource, often at a future development site
- Stations are often deployed for 1-2 years (See our MCP poster for deployment length uncertainty impact on long term GHI estimates!)
- Solar resource often uses a combination of long-term satellite modeling and on-site measurements to derive a long-term adjusted solar resource values using a Measure-Correlate-Predict (MCP) approach
- Stations often include several pyranometers, including a downward-facing pyranometer to calculate albedo





## Sample Locations

UL

Solutions



## **UL Solutions Field Services**



- UL's albedo calculation is derived from highfrequency pyranometer data
- Having collected albedometer data at over 150 locations, UL has a strong understanding of irradiance and albedo distribution across the United States
- From this data, it is possible to understand regional differences in albedo
- Extensive manual validation and QAQC practices remove systematic biases and erroneous values due to dew, frost, unlevelness, soiling and other issues



### Locations of 34 Sample Sites with On-Site Albedo





## Energy Modeling Assumptions





## **PVsyst Setup**

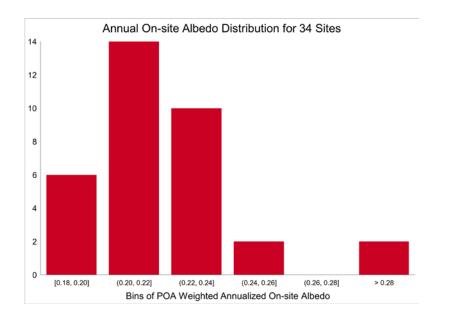
#### General

- Single inverter block simulations in PVsyst
- Generic PAN and OND from PVsyst library
- 440W Mono-PERC panel with 80% bifaciality
- Fresnel Anti-reflective coating
- 1.6m height above ground
- Unlimited trackers for bifacial and shading simulations

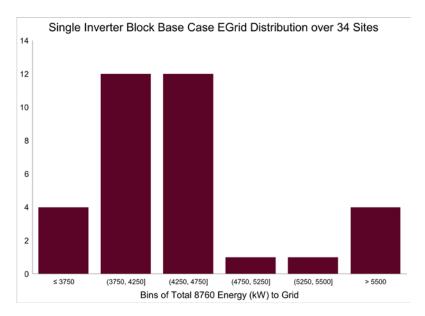
#### Site-Specific

- Site (.SIT) and Meteo (.MET) files
  - Meteo from solar resource MCP analysis where available
- Soiling losses from dust and snow
  - Bifacial benefit from snow reflection and penalty from backside soiling included




## **Modeling Assumptions**

- Project-level albedo specification remains default; no albedo benefit to front-side for these simulations
- Losses from complex terrain and specific tracker shading not included
- Horizon profile excluded from PVsyst as horizon impacts are accounted for from on-site solar resource data MCP analysis
- Standard assumptions for electrical and transformer losses
- No post-processing losses applied, such as POI clipping, wind stow, sub-hourly clipping, and availability
- Energy evaluated on a First-Year basis; no material degradation



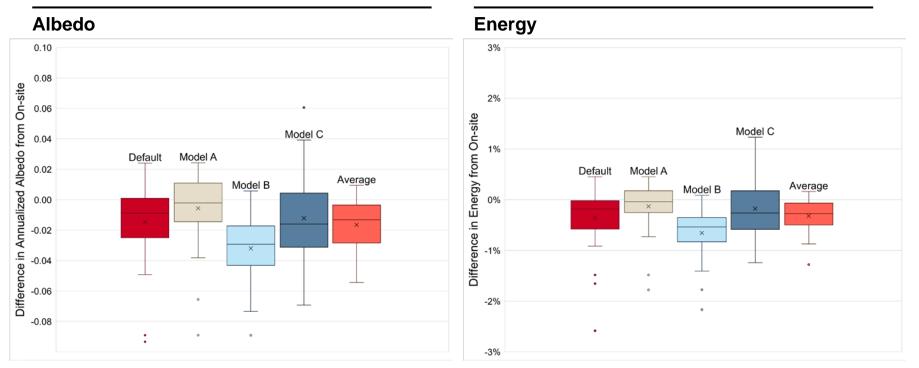

### **Base Cases - 34 Sites**

#### Albedo



#### Energy






## Results

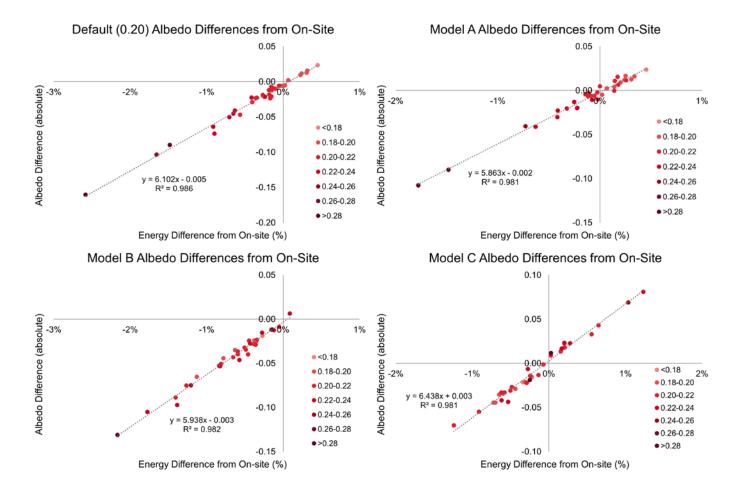




### **Differences from On-Site Scenario for 34 Sites**

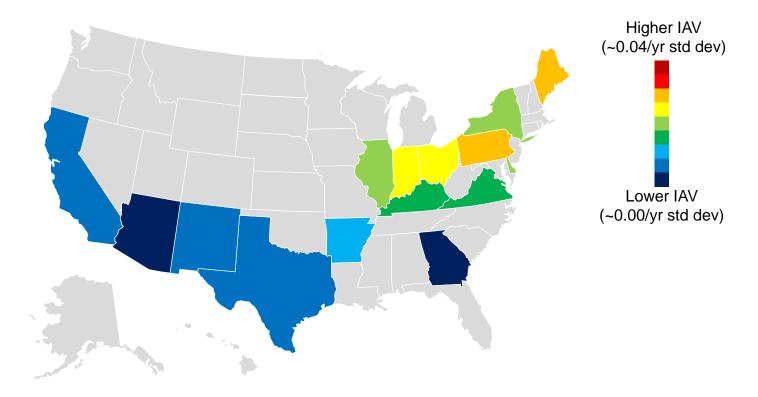





## **Differences from On-Site Scenario for 34 Sites (Tabular)**

#### Albedo

#### Energy


|      | Default<br>(0.20) | Model A | Model B | Model C | Average |      | Default<br>(0.20) | Model A | Model B | Model C | Average |
|------|-------------------|---------|---------|---------|---------|------|-------------------|---------|---------|---------|---------|
| mean | -0.01             | -0.01   | -0.03   | -0.01   | -0.03   | mean | -0.4%             | -0.1%   | -0.7%   | -0.2%   | -0.3%   |
| max  | 0.02              | 0.02    | 0.01    | 0.06    | 0.02    | max  | 0.5%              | 0.5%    | 0.1%    | 1.2%    | 0.2%    |
| min  | -0.09             | -0.09   | -0.09   | -0.07   | -0.09   | min  | -2.6%             | -1.8%   | -2.2%   | -1.2%   | -1.3%   |
| std  | 0.03              | 0.02    | 0.02    | 0.03    | 0.02    | std  | 0.6%              | 0.5%    | 0.5%    | 0.5%    | 0.3%    |







### Model 1 Albedo IAV by State (1-8 sites per state)





### Model 2 Albedo IAV by State (1-8 sites per state)





## IAV over Two Years of On-Site Data

- 5 sample sites were selected with two years of albedo data
- Note that these data are a small sample of both sites and years of operation and serve to demonstrate potential areas of risk regionally regarding on-site albedo
- Sites in the low IAV regions identified in the two long-term albedo estimates also show low IAV over this two-year period, whereas sites in regions identified as greater IAV potential also show similar results
- Maximum monthly differences reported here are primarily winter and demonstrate the variability of snowfall dates

| Site           | 1<br>(CA) | 2<br>(PA) | 3<br>(PA) | 4<br>(TX) | 5<br>(OH) |
|----------------|-----------|-----------|-----------|-----------|-----------|
| Year 1         | 0.23      | 0.29      | 0.28      | 0.19      | 0.25      |
| Year 2         | 0.22      | 0.24      | 0.22      | 0.18      | 0.24      |
| Avg            | 0.22      | 0.26      | 0.25      | 0.19      | 0.24      |
| ±              | 0.00      | 0.02      | 0.02      | 0.01      | 0.01      |
| Max<br>Monthly | 0.02      | 0.13      | 0.13      | 0.07      | 0.13      |

## Conclusions





## Conclusions

- Annual albedo estimates differ from on-site measurements on average by -0.017 ±0.023 across three models, but only translates to a -0.3% ±0.5% Energy difference
- Averaging these three models monthly before analysis maintains the same average difference, but further reduces standard deviation to ±0.015 albedo and ±0.3% Energy
- Regressions of albedo difference to energy impact suggest a 1/6 factor for this experiment, i.e., 0.06 annual albedo difference = 1% Energy difference
- On-site albedo measurement of only 1 year does not inherently capture inter-annual variability, which 2 models predict 0.00-0.04 albedo standard year-to-year differences; 2 years of albedo data at highly varied sites in snow regions may provide additional coverage
- In these high IAV environments on-site albedo measured at max or min could result in ~1% energy difference from a typical albedo year



## **Motivation Revisited**

- How much difference do different sources of annualized albedo produce? 0.017 ±0.023
- Given different albedo estimates, how much does a generic bifacial project vary in energy? -0.3% ±0.5
- Is there a relationship between differences in albedo and the resulting difference in energy? Potentially, 1/6 for this system
- Do on-site measurements capture typical long-term albedo conditions? Depends on the IAV of the region and length of on-site measurement campaign



## Future Work





## **Future Work**

#### Albedo MCP

- Measure-Correlate-Predict analyses have produced strong solar resource long-term results
- High quality modeled albedo datasets may be used in conjunction with on-site measurements to produce statistical regressions on a monthly basis to capture the effects of IAV and measurement time periods
- Best applied to regions with high IAV but verifying the low effects to low IAV regions may also provide a benefit

#### **Sub-Monthly Modeling**

- On-site albedo measurements can provide finer temporal resolution than monthly
- Modeling daily or even hourly may produce different results than this study
- Likely would need pvlib to customize this albedo application
- Unlikely to affect current energy modeling practices but understanding the effects can help better categorize the effects



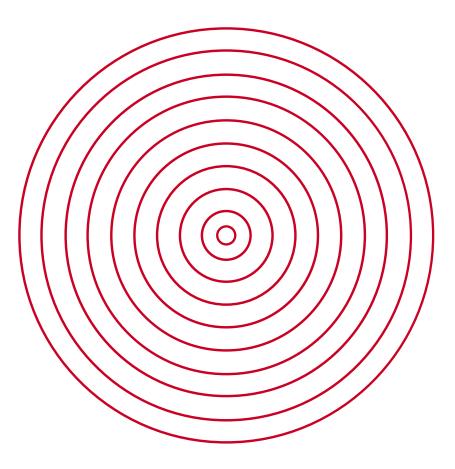


## Thank you

**UL.com/Solutions** 

Safety. Science. Transformation.™

© 2023 UL LLC. All Rights Reserved.


## Questions?

Halley Darling halley.darling@ul.com

Renn Darawali renn.darawali@ul.com

Lucila D. Tafur lucy.tafurgamarra@ul.com

**UL.com/Solutions** 



