Getting more useful information from modelling of iv curves and matrix measurements

Steve Ransome (SRCL, UK)

independent PV consultant

<u>www.steveransome.com</u> <u>mailto: steve@steveransome.com</u>

16th PVPMC 09-10 May 2023

Salt Lake City, USA..

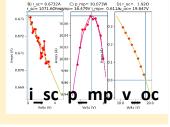
17-May-23

www.steveransome.com

Existing modelling methods give <u>reasonable energy yield estimates</u>, but there are <u>simple analysis methods that can be done to</u>

•	differentiate PV technologies	(from r_series, r_shunt etc.)
•	partition PR losses into separate causes	(e.g. v_oc, r_sc)
•	find what may be limiting performance	(e.g. r_oc is high)
•	calculate degradation rates for each loss factor under different weather conditions	(e.g. r_sc fall causes higher degradation at low G)
•	be able to suggest optimization targets	(e.g. reduce r_series)

This talk suggests <u>some improvements</u> to modelling methods, normalizing of measurements, loss and graphical analysis


Outdoor data used for this study

https://www.nrel.gov/docs/fy14osti/61610.pdf

- ✓ 11 modules of different technologies (CdTe, CIGS, aSi, 3JaSi, mcSi, scSi, HIT ...)
- ✓ Measured 3 sites FL, CO, OR for >1year
- ✓ ~180 IV points for curves each 5-15 mins
- ✓ Pyranometers for G_POA, DHI, GHI, BNI
- ☑ Soiling, precipitation, RH (ignored here)
- ✓ Fits to i_sc, i_mp, v_mp, v_oc were given

However

- ☑ No windspeed
- 🗵 No spectrum
- \boxtimes No r_sc or r_oc fits but calculated here \rightarrow

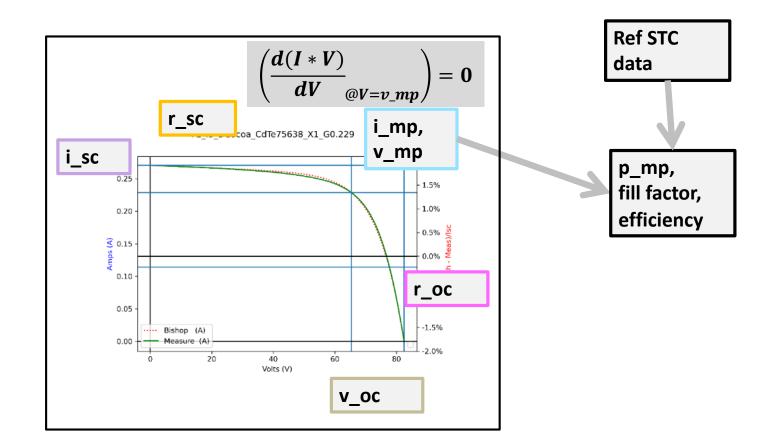
User's Manual for Data for Validating Models for PV Module Performance

W. Marion, A. Anderberg, C. Deline, S. Glick, M. Muller, G. Perrin, J. Rodriguez, S. Rummel, K. Terwilliger, and T.J. Silverman

NREL is a national faboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy

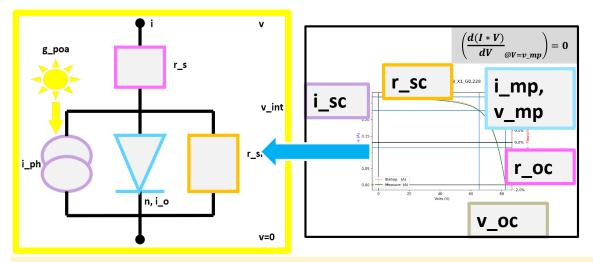
Laboratory (NREL) at www.nrel.gov/publications.

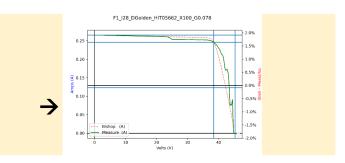
Technical Report NREL/TP-5200-61610 April 2014


Contract No. DE-AC36-08GO28308

17-May-23

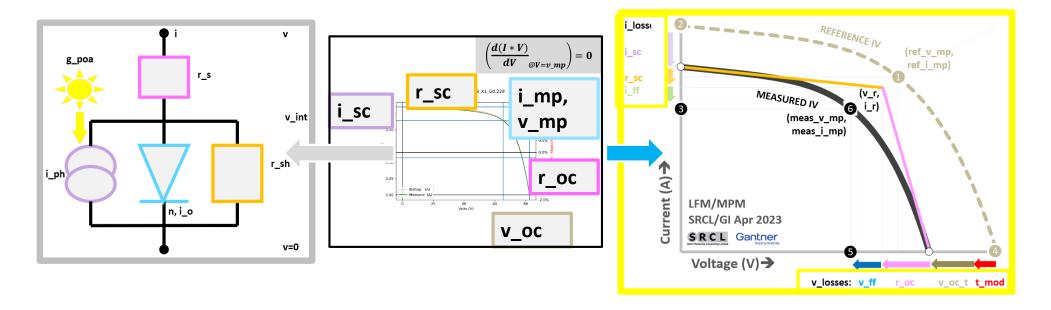
www.steveransome.com


Typical measured NREL IV curve with some fitted parameters (A, V, Ω , W)

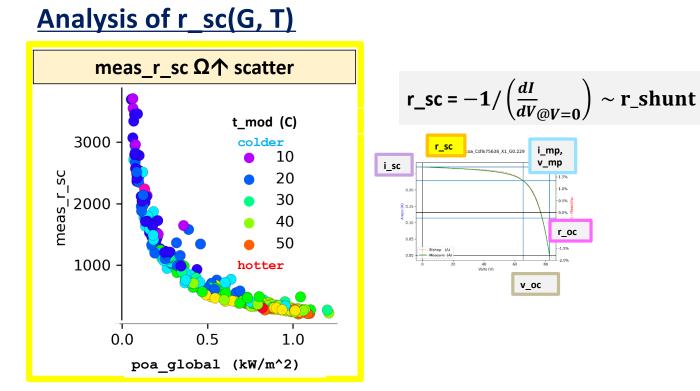

IV curve \rightarrow 1-diode model fit with 5 components

color shows which component 'dominates' each fit parameter

1-diode best fits to IV curves are limited by

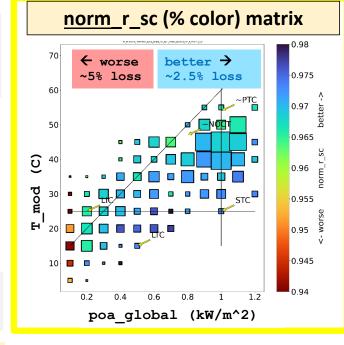

- Point distribution : e.g. "poor r_shunt fit if few near i_sc"
- Differing fit algorithms, non-unique best fits
- "imperfections" mismatch, rollover, variable cloud during scan
- Note : 5 variables are insufficient to fit all IV curves perfectly

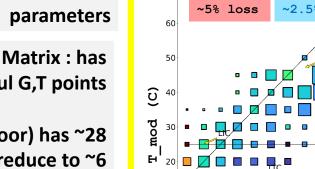
www.steveransome.com



IV Curve \rightarrow MLFM^{*} fit with 6 normalised electrical and 1 temperature correction * mechanistic loss factors model

- 6+1 normalised losses from IV curve shape
- Characterise loss parameters vs. G, T and time


r_sc vs. G is curved with a small -ve T sensitivity. Most models assume r_sc=constant or r_sc~1/G PVSYST has exponential fit HIT module shown – c-Si and thin films all have similar shapes (but differing values)


www.steveransome.com

Improved analysis of r_sc(G, T)

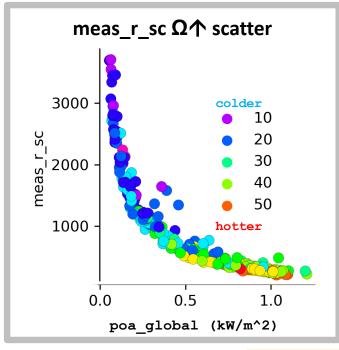
mlfm	c_1c	c_2t	c_3	lg	c_4g	rmse	
norm_r_sc 98.		-0.07%		3.0% -0.3		3% 1.19	
Mlfm calcs	STC		<u>C</u>	NOCT		HTC	
norm r so	norm r sc 97.4		5%	96.4%		95.4%	

SImilar fits can be done for any normalised

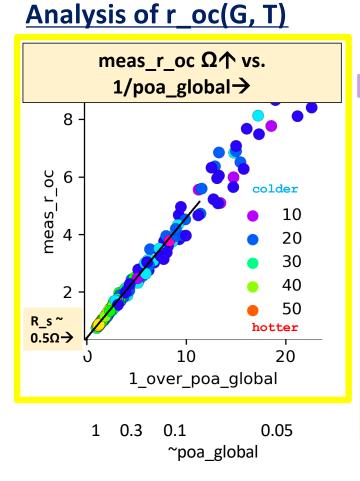
Outdoor Matrix : has 50-100 useful G,T points

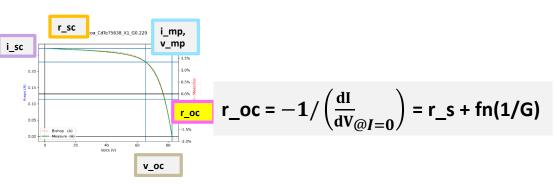
IEC 61853 (indoor) has ~28 (trying to reduce to ~6 for cost savings)

Square area proportional to Insolation (kWh/m²/yr)


MLFM Good fit to norm r sc(G,T) Temperature coefficient from fit as $c_2t \rightarrow$

mlfm fit norm r sc = =c 1c+c 2t*(T-25)+c $3lg*LOG_{10}(G)+c 4g*G$

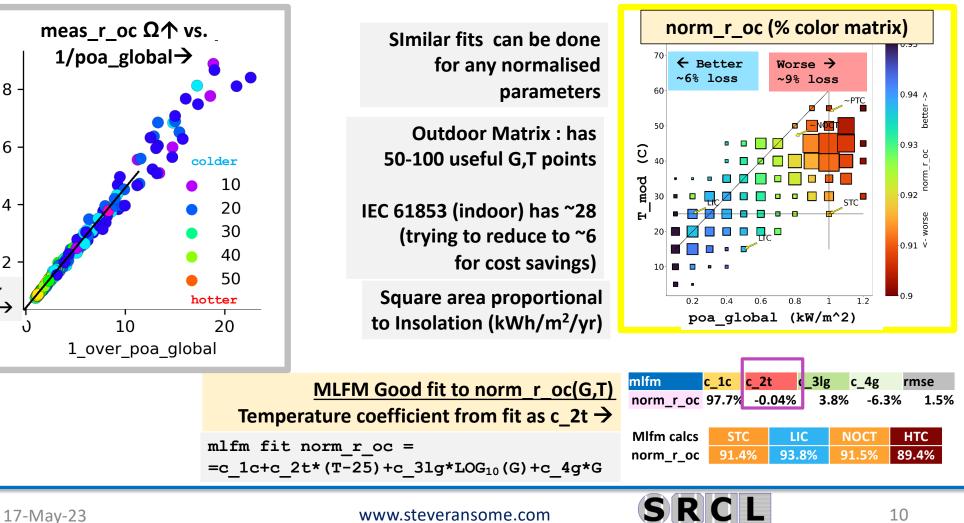



www.steveransome.com

Analysis of r_sc(G, T)

17-May-23

• r_oc^{-1} inear v.s 1/G, extrapolates to r_s at $1/G \rightarrow 0$


- Small Temp. coeff. depends on technology, usually
 - d/dT(norm_r_oc) <0 for cSi (metal)
 - d/dT(norm_r_oc) >0 for Thin films (TCO)
- Most models assume r_s(G, T) = constant

Improved analysis of r_oc(G, T)

Steve Ransome Consulting Limited

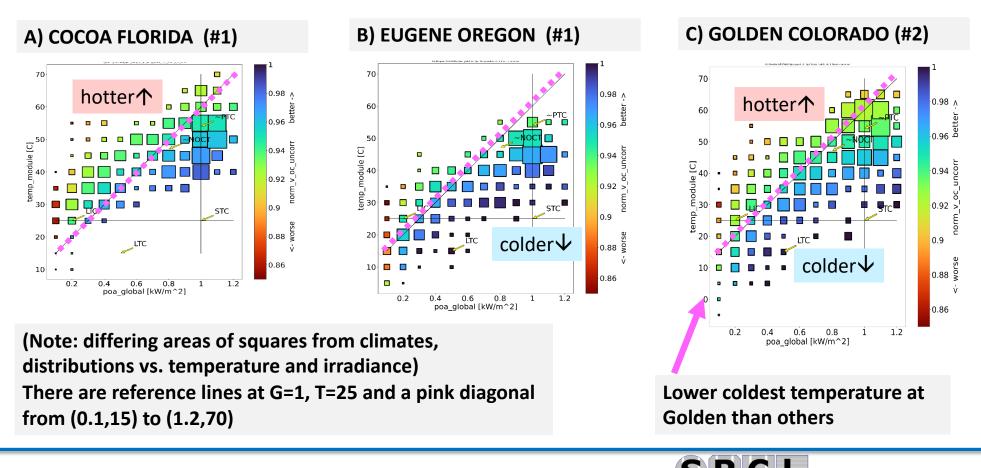
Analysis of r_oc(G, T)

8

6

4

2


meas_r_oc

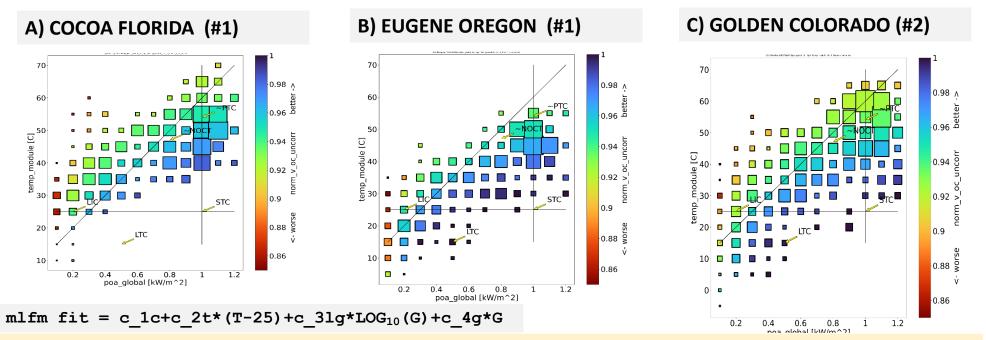
R_s ~

0.5Ω→

Performance at different sites or times

(CdTe, norm_v_oc = color)

17-May-23


www.steveransome.com

11

Steve Ransome Consulting Limited

Performance at different sites or times

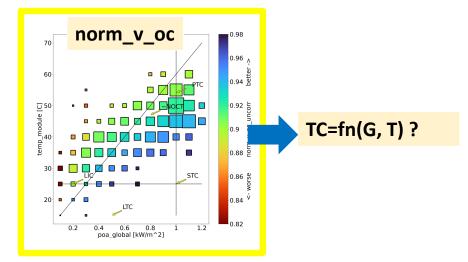
(CdTe, norm_v_oc = color)

Any performance changes would show up in MLFM fit coefficients and values at given conditions e.g. STC

State	Mod	param	c_1c	c_2t	c_3lg	c_4g	rmse	STC	LIC	NOCT	HTC
FL	CdTe	norm_v_oc	104.9%	-0.27%	14.0%	-3.0%	0 <mark>.40%</mark>	101.9%	94.5%	95.8%	88.6%
со	CdTe	norm_v_oc	102.3%	-0.25 <mark>%</mark>	11.6%	-1.9%	0 <mark>.39%</mark>	100.4%	93.8%	94.6%	87.9%
OR	CdTe	norm_v_oc	105.1%	-0.28%	13.9%	-3.6%	0.83%	101.5%	94. 7%	95.2%	87.4%

17-May-23

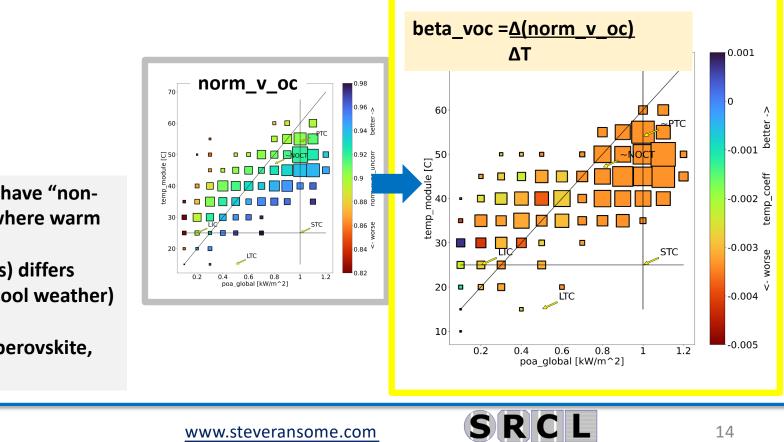
www.steveransome.com



Does the temperature coefficient vary TC=fn(G, T) ?

e.g. beta_v_oc(G, T) = $1/v_oc_STC * \Delta v_oc/\Delta T$

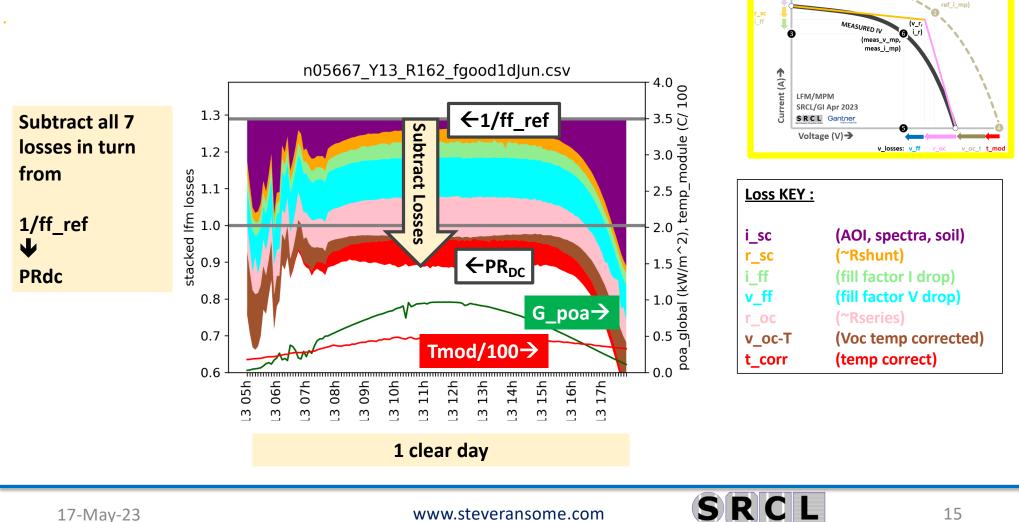
- Most models assume Temperature Coefficients TC(G, T) = constant
- Some manufacturers may provide valid ranges if they vary e.g. ">25C"
- This method with 50-100 points allows us to easily map a TC(G,T) from a normalised loss matrix



www.steveransome.com

<u>Calculated Temperature coefficient TC=fn(G, T)</u>

TC (G,T) = difference between adjacent temperature points \hat{v} mc-Si beta v oc ~ -0.35%/K



Steve Ransome Consulting Limited

Some astable thin films have "nonconstant temp coeffs" where warm autumn performance (after high temperatures) differs from cool spring (after cool weather)

Not yet tested on OPV, perovskite, dye or novel tandem

17-May-23

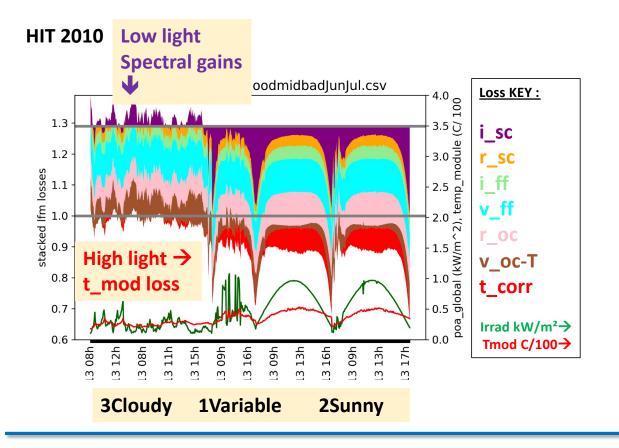
What are the performance losses by type vs. G and T?

www.steveransome.com

Steve Ransome Consulting Limited

i_loss

i sc

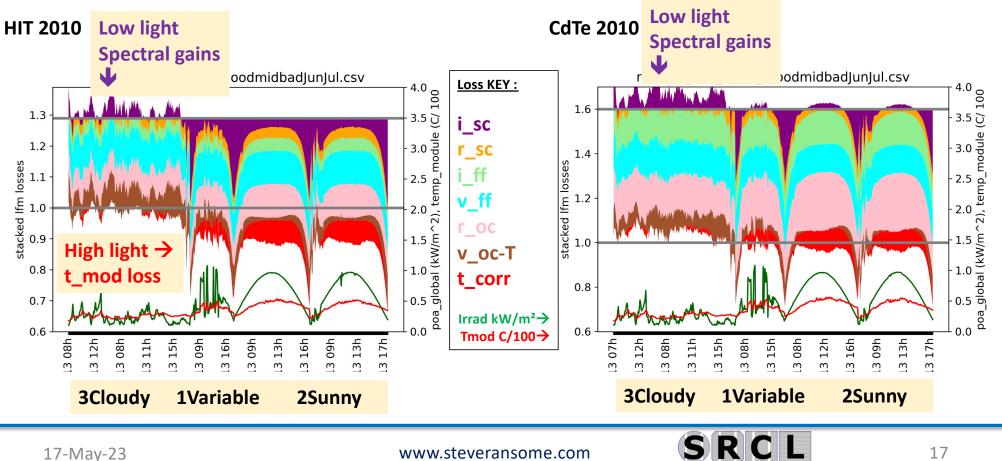


REFERENCE IV

(ref_v_mp,

Stacked losses <u>under different weather conditions</u>

(no correction for reflectivity or spectral response from pyranometer)

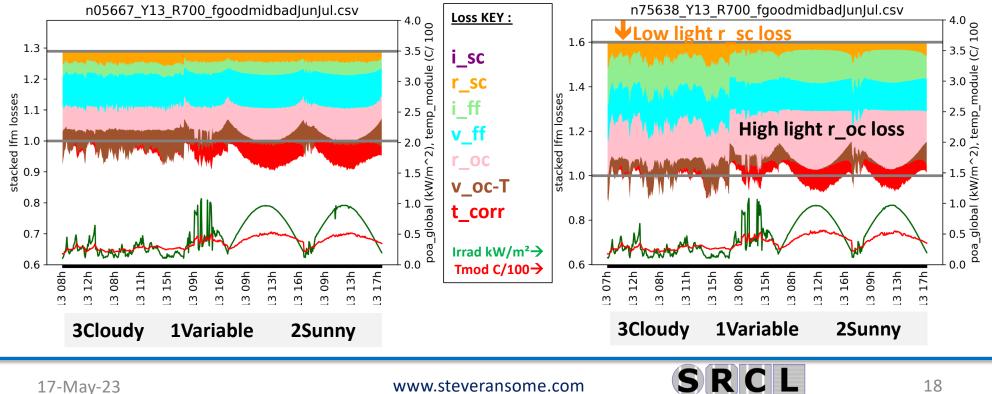

17-May-23

www.steveransome.com

Stacked losses under different weather conditions

(no correction for reflectivity or spectral response from pyranometer)

www.steveransome.com

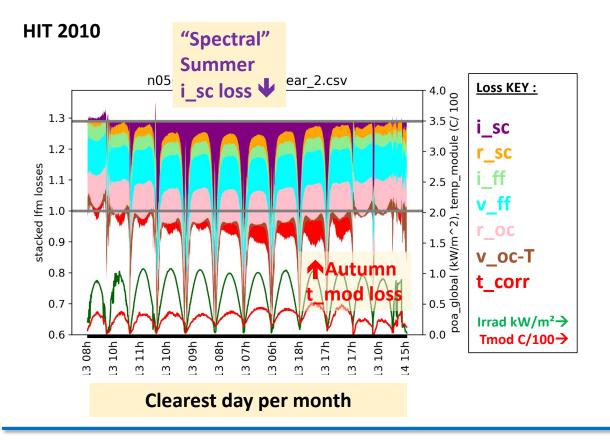

Steve Ransome Consulting Limited

Stacked losses under different weather conditions

- self referenced so easier to quantify other losses without i_sc errors

HIT 2010

CdTe 2010



www.steveransome.com

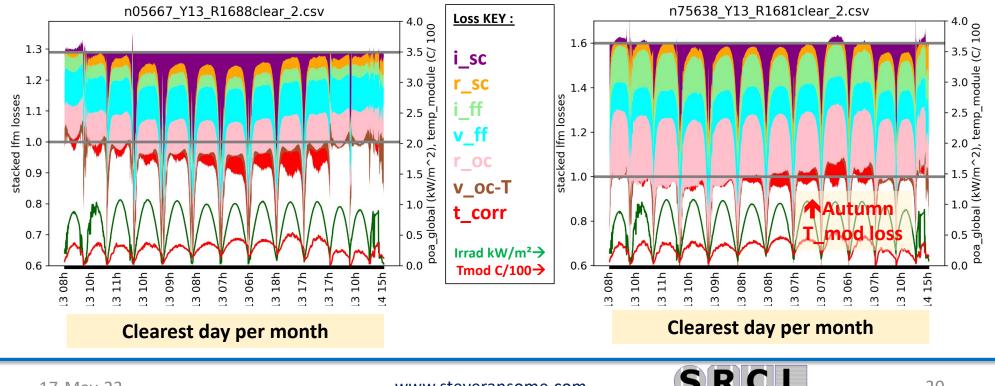
Steve Ransome Consulting Limited

<u>Stacked losses "clearest day per month Dec – Dec" "stable modules"</u>

- can show stepwise or continuous changes, seasonal astability or maybe sensor problems

17-May-23

www.steveransome.com



Stacked losses "clearest day per month Dec – Dec" "stable modules"

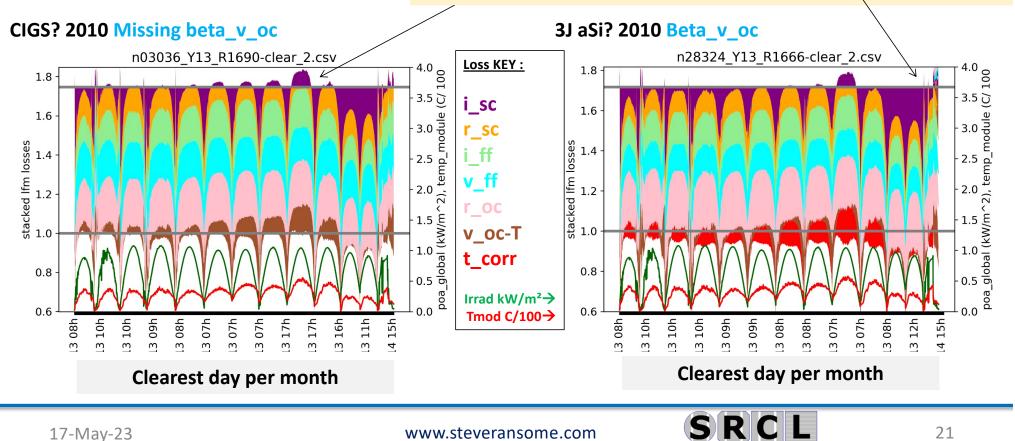
- can show stepwise or continuous changes, seasonal astability or maybe sensor problems

HIT 2010

CdTe 2010

17-May-23

www.steveransome.com


Steve Ransome Consulting Limited

<u>Stacked losses "clearest day per month Dec – Dec" "unstable modules"</u>

- show changes, seasonal astability, thermal annealing or maybe sensor problems

Atypical weather days? Thermal annealing? Spectrum? Soiling or sensor problems? i_sc worse but v_oc is better than other days

Steve Ransome Consulting Limited

Conclusions

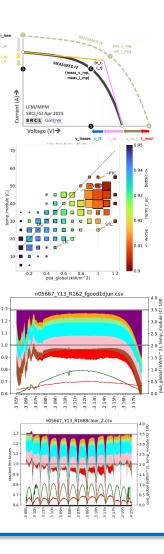
New methods have been shown using normalised loss factors to improve IV curve and matrix fits finding temperature and performance coefficients

Matrix plots (with areas ~ Insolation) are easiest to visualize and fit

Losses and causes help understand the behaviour vs. G,T and time

Relative performance of different PV technologies has been contrasted

Please contact me for more information <a href="mailto:steve


Thank you for your attention!

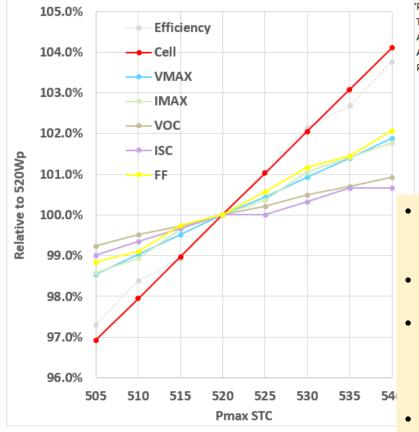
Link to temporary version until it's published bu SANDIA

www.steveransome.com/pvpmc23.pdf

17-May-23

www.steveransome.com

• SPARE


17-May-23

www.steveransome.com

Why it's better to use normalised fit coefficients rather than measured

https://www.firstsolar.com/-/media/First-Solar/Technical-Documents/Series-7/Series-7-TR1-Datasheet.ashx

TYPES:	FS-7XXXA	(XXX	=	NOMINAL P	OWER)							
AT	STANDAR TEST		CONDITIC (1000W/m2									
AM	1.5,	25°C)2										
Power3	(-0/+5%)	PMAX	(W)	505	510	515	520	525	530	535	540	
		Efficiency	%	18.1	18.3	18.4	18.6	18.8	19	19.1	19.3	
		Cell	%	18.9	19.1	19.3	19.5	19.7	19.9	20.1	20.3	
		VMAX	(∨)	182.5	183.4	184.3	185.2	186	186.9	187.8	188.7	
		IMAX	(A)	2.77	2.78	2.8	2.81	2.82	2.84	2.85	2.86	
		VOC	(∨)	223.9	224.5	225	225.6	226.1	226.7	227.2	227.7	
		ISC	(A)	3.01	3.02	3.03	3.04	3.04	3.05	3.06	3.06	
				100.10%	99.97%	100.20%	100.08%	99.91%	100.15%	100.04%	99.94%	

PV production modules are put in power bins, e.g. First Solar with 8 bins from 505-540Wp.

- These have steadily increasing i_sc, i_mp, v_mp and v_oc
- One normalised coefficient algorithm can be fitted to all bins then extrapolated to new bins rather than needing separate coefficients each bin.
- Normalised coeffs are in a narrow range, so are easy to check.

17-May-23

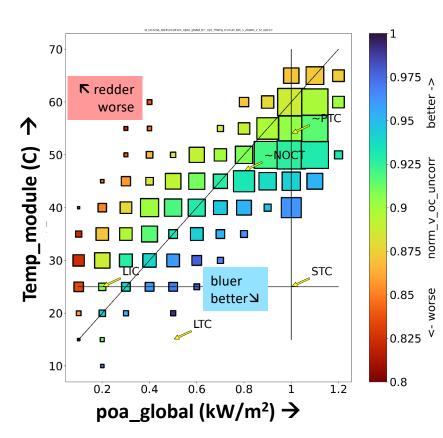
www.steveransome.com

steve@steveransome.com ; www.steveransome.com

IEC 61853 1-4 : https://webstore.iec.ch/publication/6035

MPM 1: "Accurate module performance characterisation using novel outdoor matrix methods PVSC-48, 2021" http://www.steveransome.com/PUBS/2021_06_PVSC48_Florida_Ransome_210617t10_submitted.pdf%20VIRTUAL%20PVSC%2048%202021

MPM 2: "Checking the new IEC 61853.1-4 with high quality 3rd party data to benchmark its practical relevance in energy yield prediction" PVSC-46, 2019" <u>http://www.steveransome.com/PUBS/1906_PVSC46_Chicago_Ransome.pdf</u>


1-diode : W. De Soto et al., "Improvement and validation of a model for photovoltaic array performance", Solar Energy, vol 80, pp. 78-88, (2006)

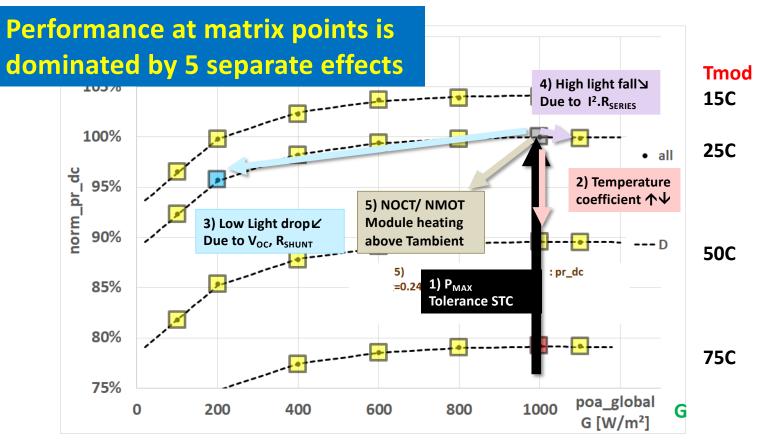
PVPMC: Holmgren, W. C. Hansen and M. Mikofski (2018). "pvlib Python: A python package for modeling solar energy systems." Journal of Open Source Software 3(29):884.

https://www.researchgate.net/publication/327525177_pvlib_python_a_python_package_for_modeling_solar_energy_systems_

Improved matrix performance plot (with four independent parameters)

color = chosen parameter
blue=best performance
green = middle
red=worst performance

Area of squares : α insolation H (kWh/m²/y)


Some standard conditions are marked e.g. STC, NOCT
Area shows most important (large) vs. insignificant (very small) which may be outliers

www.steveransome.com

Effects that determine shape of measurement matrix Module #5 c-Si

pr_dc = meas_eff / stc_eff = meas_p_max / stc_p_max / g_kW_m2

Steve Ransome Consulting Limited

www.steveransome.com

17-May-23