Comparison of Open-Source Photovoltaic Performance Models Against Multi-Year Field Data

Lelia Deville, Marios Theristis, Bruce H King, Terrence L Chambers, Joshua S Stein

PVPMC 2023

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2023-03207C

Motivation

- Models vary widely according to the inputs they take and the complexity of their calculations
- Comparisons of models exist, but are usually limited
- PVPMC blind modeling comparison highlighted errors caused by modeler skill and varied assumptions

Aimed to :

- Create a comprehensive comparison of all open-source models against multi-year data from different c-Si technologies
- Remove modeler skill and varied assumptions from the analysis

SLTE Systems

SLTE systems located at Sandia National Laboratories

System information of the seven SLTE systems used in the study

Manufacturer & Model	Cell Technology	# of Modules	Installation Date	Start Date*	Abbreviation Used
LG 320N1K-A5	N-PERT Si	4 strings of 12 (48)	June 2018	May 2018	LG320
Panasonic VBHN325SA16	HIT Mono Si	4 strings of 12 (48)	June 2018	May 2018	Panasonic325
Canadian Solar CS6K-270P	Poly-Si	4 strings of 12 (48)	October 2017	January 2018	CSpoly270
Canadian Solar CS6K-275M	Mono-Si	4 strings of 12 (48)	October 2017	January 2018	CSmono275
Hanwha Q Cells Plus Q.Plus BFR-G4.1 280	Poly-Si PERC	4 strings of 12 (48)	October 2017	January 2018	Qpoly280
Hanwha Q Cells Peak Q.Peak BFR-G4.1 300	Mono-Si PERC	4 strings of 12 (48)	October 2017	January 2018	Qmono300
Mission Solar MSE300SQ5T	Mono-Si PERC	4 strings of 12 (48)	May 2019	May 2019	Mission300

*All systems' reporting periods end on the same day: December 31, 2021

Our Data

Measured Weather & System Data

1-min interval for up to 4 years

Spec Sheet vs Module Specific Data

- Spec sheets are representative of a larger population of modules

5

- But module performance may deviate from specification sheet
- Some modules were underrated while others were over rated by as much as 5%
- Input data being accurate to the system being modeled is important

Theristis M, Stein JS, Deline C, et al. Onymous early-life performance degradation analysis of recent photovoltaic module technologies. Prog Photovolt Res Appl. 2023;31(2):149-160. doi:10.1002/pip.3615

Data Preparation

6

- All models came from *pvlib-python*
- Perez has 11 variations of coefficients
- Compared against measured POA from a pyranometer

Module/Cell Temperature Models

Module Temperature Models >SAPM >Faiman Cell Temperature Models >Ross >PVSyst >SAM NOCT >SAPM Cell Transient >Prilliman >Fuentes

- All models came from *pvlib- python*
 - From T_C to T_M : $T_M = T_C - \frac{POA}{POA_0} \Delta T$
- Prilliman is an additive model while Fuentes is stand-alone

Bilinear Interpolation

Flat 2% derate applied

Overview

- 11 Perez models vary based on location data for the coefficients
- Best RMSE & MBE were the phoenix1988 and albuquerque1988

MBE vs RMSE of 11 Perez POA models

MBE (W/m^2)

Transposition Models - All

- Klucher Perez had lowest RMSE
- Overall models' NMBE was within ±3% but differences in performance can be seen at different irradiance levels
- Perez abq1988 had most consistent performance at all irradiance levels and lowest NMBE at irradiance intervals with highest proportion of data in them

Module/Cell Temperature Models

Residuals (Modeled Temperature – Measured Temperature) of module and cell temperature models

- Mean and median residuals were ± 6.5 °C of measured temperature
- PVSyst performed best when using a calculated efficiency based on system performance and weather conditions rather than using rated efficiency
- All models underestimated except Ross

14 Transient Temperature Modeling

- Additive transient Prilliman model did slightly improve all models RMSE
- Largest difference in performance can be seen when comparing sunny and cloudy days

15 Performance Models

- 1st and 3rd quartile NMBE within ±4.2% of measured values
- Average NMBE within ±2.3% of measured values
- Simplest model performed similarly to other much more complex models

NMBE for all performance models for all systems using all years of data

Performance Models – Levels of Irradiance

16

Performance models' NMBE at different levels of irradiance

- Models' performance varied at different irradiance levels
- Models were grouped by their inputs and similar models had similar performance at the different irradiance levels
- *pvlib-python* implements PVWatts v5 which removed the low-light (< 150 W/m²) term of the equation that was present in previous versions

Performance Models – Time of Year/Day

- Models' performance varied at times of day and times of the year
- Analemma diagrams show lower NMBE in morning and later half of the year for the SAPM model than the Heydenreich model for the LG320 system

Conclusions & Future Work

- POA models performed similarly; using a location specific Perez model did improve the model's accuracy
- Temperature models' RMSE improved up to 2.2 °C with transient assumptions on cloudy days; these models are even more important for locations with dynamic conditions
- The performance models exhibited NMBE within ±2.3% but differences can be seen at varying levels of irradiance, times of day, and times of year
- Model complexity does not guarantee any greater accuracy
- Input module data could be more significant than the model
- This analysis allowed for an apples-to-apples comparison, whereas in our blind modeling comparison efforts the outcomes were dominated by modeler skill and derate assumptions
- Future work will include the creation of validation test protocols to reduce modeling errors and create a pathway towards standardized model validation

Please join the PVPMC at https://pvpmc.sandia.gov/ Contribute, and help increase confidence in PV system performance Thank you! Lelia Deville Imdevil@sandia.gov

Solar Energy Technologies Office Award Number 38267

