

Modeling Transposition for Single Axis Trackers Using Terrain Aware Backtracking Strategies

Jenya Meydbray, Nevados

Kurt Rhee, Terabase Energy On Behalf of Nevados

Nevados Tracker Geometry

© 2023 Nevados | MAY 2023

ANATOMY OF A TERRAIN FOLLOWING HORIZONTAL SINGLE AXIS TRACKER

0 to +/- 26% slope change

T.R.A.C.E

Tracker Rotation Angle Computation Engine

© 2023 Nevados | MAY 2023

TRACKER ROTATION ANGLE

Site Terrain Characterization

NEVADOS

Example Site Terrain

What was not studied?

Effects of electrical mismatch

Effects of self-shading

Hay Transposition Model (This study focuses entirely on Perez)

Experiment 1: Terrain Naïve Strategy (2D algorithm)

Experiment 2: Terrain Aware Strategy

Compare Results: example site IL

		Transposition Gain (%)	Effective Insolation (kWh/m^2)
*	GCR Based Backtracking	25.0	2000
*	Nevados Backtracking	29.3	2068

Compare Results

		Transposition Gain (%)	Effective Insolation (kWh/m^2)
* * * * * * * * * * *	GCR Based Backtracking	25.0	2000
	GCR Based Backtracking w/New GCR Setpoint	?	?
	Nevados Backtracking	29.3	2068

Experiment 1: Terrain Naïve Strategy

GCR BASED BACKTRACKING WITH MANY DIFFERENT GCR SETPOINT (WEIGHTED AVERAGE)

Compare Results

Transposition Gain: POA vs. GHI

		Transposition Gain (%)	Effective Insolation (kWh/m^2)
* * * *	GCR Based Backtracking	25.0	2000
	GCR Based Backtracking w/New Setpoint	27.5	2040
	Nevados Backtracking	29.3	2068

Energy Results

- [100%] Grade the site entirely flat
- [83%] Account for Northerly aspect of the site slope
- [63%] Nevados Backtracking
- [33%] No Grading, GCR based backtracking, Increase the algorithm GCR setpoint
- [0%] No Grading, GCR based backtracking

Modeling POAI in PVSyst

© 2023 Nevados | MAY 2023

PVSyst

CONSTRAINTS:

PVSyst will calculate tracker rotation angles for you.

PVSyst will use Hay for the retro-transposition model

PVSyst

Modeling in PlantPredict

© 2023 Nevados | MAY 2023

PlantPredict

CAPABILITIES:

Custom tracker timeseries available

CONSTRAINTS:

Must control an entire DC Field object, not individual trackers (will change in the future)

PlantPredict

Calculate the weighted average tracker rotation angle at every timestep

Upload average tracker rotation angle data, turn off direct shading

PlantPredict will now transpose the custom components to the same plane of array irradiance as calculated by PVLIB

Averaging POAI	Average Rotation Angle, then calculate POAI
2071.87	2068.23
	-0.18%

