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2 | Motivation: Mechanistic PV Performance and Degradation Modeling

Mechanistic understanding of photovoltaic

array performance can decrease the Levelized n UHO+MHE)
| | LCOE=— 0
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in the industrial and R&D sectors.






4 | Field I-V Data

PV systems at all scales produce large amounts of time-series data.
“Smart” inverters or microinverters measure I-V curves on the string or module level.

Parameterizing I-V curves and looking at long-term trends improves understanding of
system performance, but:

e values are not directly comparable
e changes in these quantities are not necessarily proportional to power loss



s | Laboratory-Based Suns-V
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6 I Mining ls--Voc from Field Data

Time-series data is divided into analysis

periods

e Sutficiently long to collect enough low
irradiance data to build Ig-V

® But short enough to ensure pseudo-
stability of the module

® To evaluate trends in power loss modes
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7 | Outdoor |-V Curve Construction

Reference
condition (RC) Cleaned outdoor
POA: | sun time-series /-J data
Ty median Ty, } :
at 1 sun Feature extraction
1 with ddiv
I or every data
Median 7,, analysis period
at 1 sun
l .
r Ise Voo pairs —l
— VocUsca Tm) [gc ~ GPOA
lac(GPoa) =k-Groate ©) () ®) ©
1
I..-V, . at
msecdiaclf T Isun /s

v
Pseudo /-V curve
at RC (10)




s | Outdoor l;~-Vc Curve Construction

‘/oc — VYoc0 + NO ) 5(Tc)ln(Ee) + fBVoc (TC - TO) (1)

VoeLsey, Trn) = ag + aq - (T + 273.15) - In(Ls.)+

8
ag - (T +273.15) + € (8)

King, David L., Jay A. Kratochvil, and Boyson, William E. Photovoltaic
array performance model. Sandia National Laboratories, 2004.
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9 | Outdoor l;~-V Curve Construction
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Voc temperature correction results
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11 1 Quantifying power loss mechanisms from l¢--V 5

Detecting loss mechanisms of c-Si PV modules by I-V,. and I-V

measurement
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12 | lsc-V o Mechanistic Power Loss Calculation

In each analysis period:

® |-V features are modeled
® [ -Vyeis con§tructed
® and parameterized

to create the sub-1-V curves for
mechanistic power loss calculation

condition (RC)

Reference

[T m: median T}y,

Cleaned outdoor
time-series I-V data

|

POA: 1 sun J

at 1 sun

Feature extraction
with ddiv

Median 7,
at 1 sun

or every data
analysis period

|
[ Iy V. pairs 1

]
v

—

mp> ¥ mp» 8

R

VOC(ISC’ Tm) ISC - GPOA Imp(fsc-,- Tm)
(1) ®) ) (4 (11)
v A
I -V . at
sc . oc 1sun I.S'C Vmp(ISC, Tm)
median 7, | (5) (12)
| ¥
¥
Pseudo /I-V curve Ry(Ise, Tr)
at RC (10) (7) ‘(13)
Feature extraction
with ddiv v C‘;II‘V o
v
Pseudo /-V curve features at RC
features at RC
| |
Power loss

calculation




13

|-V 5 Mechanistic Power Loss Calculation

Inp =Ipo - {Co - Ec + C1 - EZ} - {1 + oy, (T. — Tp)}

Lonp(Lse, T) = Bo + Br - (T + 273.15) - I,
By (Tyy, +273.15) - I, + €

(4)
(1D

condition (RC)

Reference

LTm: median Ty,

Cleaned outdoor
time-series I-V data

|

POA: | sun
at 1 sun J

Feature extraction
with ddiv

or every data
nalysis period

Median 7,
at 1 sun
v !
[ Iy V. pairs 1 Lyps Vinps Rs
VOC(ISC’ Tm) ISC - GPOA Imp(fsc, Tm)
(1) ®) ) 4 (11)
v A
Lg- .Voc at lsun I VmpUsc, Tm)
med1&|1n 7, | (5) (12)
¢ ¥
Pseudo /I-V curve Ry(Ise Tpy)
at RC (10) (7) ‘(13)
v
Feature extraction
with ddiv v C‘;]I‘V o
v
Pseudo /I-V curve features at RC
features at RC
| |
Power loss

calculation




14 | ls-Voc Mechanistic Power Loss Calculation
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15 I lse-Voc Mechanistic Power Loss Calculation

N, nkg(T, + 273.15)

R, = R, — 7
0T T . (7)
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Rs(Ise, Tin) = Co+ (3 7 + € (13)

Wang, Jen-Cheng et al. "A novel method for the determination of dynamic

resistance for photovoltaic modules." Energy 36, no. 10 (2011): 5968-5974.
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16 | lsc-Voc Power Loss Calculation
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17 1 Analytic |-V Obtained Loss Mechanism Time-series
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Analytic l¢~-V5- Obtained Loss Mechanism Time-series

POV‘&er 0SS % |mismatch * Recombinaton 4 Rsloss © Uniform current
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Analytic l¢~-V5- Obtained Loss Mechanism Time-series

Pom:jer loss | mismatch * Recombination 4 Rsloss ® Uniform current
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Results for c-Si module in the Negev
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Analytic l¢~-V5- Obtained Loss Mechanism Time-series
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Analytic l¢~-V5- Obtained Loss Mechanism Time-series
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24 | Laboratory External Quantum Efficiency

External Quantum Efficiency (EQE)

® Ratio of collected electrons to
incident photons on device

® Depends on absorption of light
and collection of charge carriers

® Usually measured on cells using

monochromator

Jo /g

EQE =

‘ Blue response is reduced

—h

External Quantum Efficiency

due to front surface recombination.

[

(b.in

The red response is
reduced due to rear
surface recombination,
reduced absorption at
long wavelengths and
low diffusion lengths.

Ll Ideal quantum

caused by reflection and a low
diffusion length,

A reduction of the overall QE is

efficiency

Mo light is absorbed
below the band gap
so the QE is zero at
long, wavelengths

/
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25 ‘ Spectral Response vs EQE
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26 I Mining EQE from Field Data
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27 | Time Series Matrix Representation
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2 | Initial Analytic EQE result -
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2 | Initial Analytic EQE result -
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3 | Temperature-based band gap shift applied to spectral data
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31 | Temperature-based band gap shift applied to spectral data
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32 I Conclusions

Mechanistic performance data mined from time-series can be used to:

e [Fvaluate long-term trends in performance
e Identify dominant or changing degradation mechanisms

Or can be used as a monitoring tool to:
e Alert operators to “abnormal” conditions or data issues

e Indicate need for service e.g., cleaning
Future work:
e Adapt Field Analytic Isc-Voc and EQE measurements for inverter data

e Validation of mined datatypes and analysis with laboratory measurements
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