Pecos, Open Source Software for PV Performance Monitoring

8th PV Performance Modeling and Monitoring Workshop
Albuquerque, NM, May 9-10, 2017

Katherine A. Klise
Sandia National Laboratories, Albuquerque, NM
Overview

- **What is Pecos? (PAY-cose)**
 - Software for automated quality control and performance monitoring of time series data

- **Why use Pecos?**
 - Collect large amounts of data on multiple systems and locations
 - Run automated quality control tests on that data
 - Alert system operators when the system has changed
 - Generate reports
 - Collect performance statistics to track long term system health
 - Compare system performance across sites
Getting started

- Retrieve data
 - From sensor, database, files, or from the web
 - 3Vs (volume, velocity, and variety)
 - Single or repeat (automated)

- Define analysis
 - Analysis/reporting time interval
 - Filters
 - Integrate models
 - Quality control tests
 - Metrics

- Final product
 - Simple to complex
 - Red/yellow/green approach
 - Time series or interactive graphics
 - Performance history
 - Dashboards hosted on the web
 - Email alerts
Time series data

- Time series data loaded into Pecos as a Pandas DataFrame
 - Powerful time series analysis options
 - Datetime and timezone recognition
 - Merge multiple DataFrames in a single analysis (i.e. electrical and weather)
 - Data can be easily loaded from database, file, or web

- New Data acquisition methods recently added to Pecos
 - Transfer data from sensors to an SQL database

- User defines the analysis timeframe (minute, hour, day, month, …)
- Data can be grouped and renamed according to type
- Repeat analysis automated using OS task scheduler (cron, tasks)

```python
From database
sql_con = MySQLdb.connect(host=ip_address, port=...)
sql_query = "SELECT * FROM table..."
df = pandas.read_sql(sql_query, con=sql_con)

From file
df = pandas.read_csv(filename)

From the web
response = requests.get(url=http://developer.nrel.gov/pvdaq/api/...)
data = json.loads(response.text)
df = pandas.DataFrame(data=data['outputs']['data'])
```
Pre-processing filters

- **Filter data**
 - Smoothing
 - Upscale/downscale

- **Fill missing data**
 - Interpolation (linear, polynomial, etc.)
 - Duplicate sensors
 - Historic/regional data
 - Data generated from models

- **Time filter**
 - Conditional statement that exclude specific timestamps from quality control tests
 - Time filter can be based on:
 - Time of day (i.e. before 8 am and after 5 pm)
 - Sun position (i.e. sun elevation < 10 degrees)
 - Data properties (i.e. irradiance < 200 W/m²)
Composite signals

- Composite signals are used to create new data from existing data or from a model
 - Compute relationships between data columns
 - Compare measured data to a model
 - PVLIB performance model
 - Machine learning

- Examples
 - DC Power from current and voltage
 - Inverter efficiency from DC and AC power
 - Normalized efficiency from power and irradiance
 - Module temperature deviation
 - Relative error between model and data

- Composite signals can be used in the quality control tests
Quality Control tests

- Quality controls tests fall into five categories
 - Timestamp test
 - Missing data test
 - Corrupt data test
 - Range test
 - Dead sensor/abrupt change tests

- When a test fails, information is stored in a summary table which can be included in automated reports and saved to file/database. Graphics can be produced that pin point the data points that caused the test failure.

<table>
<thead>
<tr>
<th>System Name</th>
<th>Variable Name</th>
<th>Start Date</th>
<th>End Date</th>
<th>Timesteps</th>
<th>Error Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV System 1</td>
<td>Direct_Wm2</td>
<td>2017-04-19 12:36:00</td>
<td>2017-04-19 17:40:00</td>
<td>305</td>
<td>Increment < lower bound, 0.0001</td>
</tr>
</tbody>
</table>
Quality Control tests

- **Timestamp test** identifies duplicate, non-monotonic, and missing timestamps. *New* Irregular timestamps can be preserved.
- **Missing data test** identifies column-time pairs that are missing.
- **Corrupt data test** screens for datalogger values that indicate corrupt data.

![Quality Control Tests Diagram]

Original data

<table>
<thead>
<tr>
<th>TIMESTAMP</th>
<th>Column A</th>
<th>Column B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1/2017 0:00</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1/1/2017 1:00</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1/1/2017 2:00</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1/1/2017 3:00</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>1/1/2017 4:00</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>1/1/2017 5:00</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>1/1/2017 6:00</td>
<td>8</td>
<td>-999</td>
</tr>
<tr>
<td>1/1/2017 7:00</td>
<td>7</td>
<td>-999</td>
</tr>
<tr>
<td>1/1/2017 8:00</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>1/1/2017 9:00</td>
<td>9.5</td>
<td>2</td>
</tr>
</tbody>
</table>

Corrected data

<table>
<thead>
<tr>
<th>TIMESTAMP</th>
<th>Column A</th>
<th>Column B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1/2017 0:00</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1/1/2017 1:00</td>
<td>NaN</td>
<td>2</td>
</tr>
<tr>
<td>1/1/2017 2:00</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1/1/2017 3:00</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1/1/2017 4:00</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>1/1/2017 5:00</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>1/1/2017 6:00</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>1/1/2017 7:00</td>
<td>7</td>
<td>NaN</td>
</tr>
<tr>
<td>1/1/2017 8:00</td>
<td>8</td>
<td>NaN</td>
</tr>
<tr>
<td>1/1/2017 9:00</td>
<td>9</td>
<td>1</td>
</tr>
</tbody>
</table>
Quality Control tests

- **Range tests** checks if data is within expected bounds
 - Ambient temperature should be between -30 and 50 degrees C
 - Normalized efficiency (composite signal) should be between 0.5 and 1
- **New Dead sensor/abrupt change test** checks if the difference between min and max is within expected bounds over a given time span
 - Voltage should not change by more than 80% rating within 15 minutes
 - The rain gauge should not increase by more than 2 inches in an hour
 - If the irradiance sensor changes by less than 0.0001 in 5 hours, it’s probably dead
Evaluating quality control tests

- **New** Evaluate how well a quality control test (or set of quality control tests) distinguishes normal from anomalous conditions.
 - Probability of detection
 - False alarm rate

- Strategies to reduce false positives and false negatives
 - Adjust thresholds
 - Specify the minimum number of consecutive failures needed to signal a warning
 - Smooth data before running quality control tests

<table>
<thead>
<tr>
<th>Estimated normal condition</th>
<th>Actual normal condition</th>
<th>Actual anomalous condition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>True negative (TN)</td>
<td>False negative (FN)</td>
</tr>
<tr>
<td>Estimated anomalous condition</td>
<td>False positive (FP)</td>
<td>True positive (TP)</td>
</tr>
</tbody>
</table>

\[
\text{FAR} = \frac{\text{TN}}{\text{TN} + \text{FP}} \\
\text{FAR} = 1 - \text{Specificity} \\
\text{PD} = \frac{\text{TP}}{\text{TP} + \text{FN}} \\
\text{PD} = \text{Sensitivity}
\]
RTC quality control analysis

- Regional Test Center Baseline and Weather systems
 - New Mexico, Florida, Vermont, Nevada
 - 2 strings of 12 Suniva Optimus 270 Black modules

- Quality control tests and performance metrics based on IEC 61724
 - Check for data outside expected range, dead sensors, and abrupt changes
 - Compute in-service and all-in energy performance index

- Analysis run daily (near real-time), results emailed to stakeholders.

- End of year report

<table>
<thead>
<tr>
<th>Weather data</th>
<th>Baseline PV data</th>
</tr>
</thead>
<tbody>
<tr>
<td>GHI, DNI, DHI, air pressure, wind speed, wind direction, relative humidity</td>
<td>For each string: DC voltage, DC current, AC voltage, AC current, AC power, power factor, frequency, reference cell irradiance, and reference cell temperature</td>
</tr>
</tbody>
</table>

Module specs: $P_{\text{max}} = 270$ W, $V_{\text{mp}} = 31.2$ V, $V_{\text{oc}} = 38.5$ V, $I_{\text{mp}} = 8.68$ A, $I_{\text{sc}} = 9.15$ A
RTC quality control analysis

Load time series data
- Daily or entire year

Define system variables
- Group according to type

Define filters
- Apply a linear filter if data is missing for < 2 hours
- Screen out data when POA < 200 W/m² or sun elevation < 20 degrees

Add composite signals
- DC power
- Inverter efficiency
- Normalized efficiency
- Module temperature deviation

Run quality control tests
- Duplicate, non-monotonic, missing timestamps
- Missing if > 2 hours
- Corrupt if -999
- Expected range
- Dead/abrupt change

Performance model
- PVWatts model run using PVLIB
- Filter out data that failed quality control test before running the model

Compute metrics
- Data availability
- Quality control index
- System availability
- Energy performance index

Generate reports
- Daily dashboard with link to interactive graphics and detailed report
- Performance history over the year

Compute metrics
- Data availability
- Quality control index
- System availability
- Energy performance index

Generate reports
- Daily dashboard with link to interactive graphics and detailed report
- Performance history over the year
RTC quality control analysis

- **Expected range, dead sensor, abrupt change thresholds**

<table>
<thead>
<tr>
<th>Variable</th>
<th>Expected range</th>
<th>Dead sensor threshold</th>
<th>Abrupt change threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC current and AC current (A)</td>
<td>> 0 and < Imp*1.5</td>
<td>< 0.0001 in 5 hours</td>
<td></td>
</tr>
<tr>
<td>DC voltage and AC voltage (V)</td>
<td>> 0 and < Vmp121.5</td>
<td>< 0.0001 in 5 hours</td>
<td></td>
</tr>
<tr>
<td>DC power* and AC power (W)</td>
<td>> 0 and < Pmp121.5</td>
<td>< 0.0001 in 5 hours</td>
<td>> Pmp120.8 in 15 min</td>
</tr>
<tr>
<td>Power factor</td>
<td>> -1 and < 1</td>
<td>< 0.0001 in 5 hours</td>
<td></td>
</tr>
<tr>
<td>Frequency(Hz)</td>
<td>> 57 and < 63</td>
<td>< 0.0001 in 5 hours</td>
<td></td>
</tr>
<tr>
<td>POA, DNI, GHI, and ref cell irradiance (W/m²)</td>
<td>> 0 and < 1500</td>
<td>< 0.0001 in 5 hours</td>
<td></td>
</tr>
<tr>
<td>DHI (W/m²)</td>
<td>> 0 and < 500</td>
<td>< 0.0001 in 5 hours</td>
<td></td>
</tr>
<tr>
<td>Air pressure (mbar)</td>
<td>> 800 and < 1020</td>
<td>< 0.0001 in 5 hours</td>
<td>> 100 in 15 minutes</td>
</tr>
<tr>
<td>Wind speed (m/s)</td>
<td>> 0 and < 32</td>
<td>< 0.0001 in 5 hours</td>
<td></td>
</tr>
<tr>
<td>Wind direction</td>
<td>> 0 and < 360</td>
<td>< 0.0001 in 5 hours</td>
<td></td>
</tr>
<tr>
<td>Relative humidity</td>
<td>> 0 and < 100</td>
<td>< 0.0001 in 5 hours</td>
<td>> 50 in 15 minutes</td>
</tr>
<tr>
<td>Ambient temperature (°C)</td>
<td>> -30 and < 50</td>
<td>< 0.0001 in 5 hours</td>
<td>> 20 in 15 minutes</td>
</tr>
<tr>
<td>Module and ref cell temp (°C)</td>
<td>> -30 and < 90</td>
<td>< 0.0001 in 5 hours</td>
<td>> 20 in 15 minutes</td>
</tr>
<tr>
<td>Module temp deviation (°C)*</td>
<td>> -10 and < 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inverter efficiency*</td>
<td>> 0.5 and < 1</td>
<td></td>
<td>> 0.25 in 15 minutes</td>
</tr>
<tr>
<td>Normalized efficiency*</td>
<td>> 0.5 and < 1</td>
<td></td>
<td>> 0.25 in 15 minutes</td>
</tr>
</tbody>
</table>

* Composite signal

RTC quality control analysis

Daily report, red/yellow/green dashboard with links to details and interactive graphics

RTC Dashboard for 2017-03-24

<table>
<thead>
<tr>
<th></th>
<th>New Mexico</th>
<th>Florida</th>
<th>Vermont</th>
<th>Nevada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weather</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irradiance</td>
<td>1.00</td>
<td>1.00</td>
<td>0.57</td>
<td>1.00</td>
</tr>
<tr>
<td>Wind</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Air Pressure</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Humidity</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Rainfall</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Datalogger</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Detailed Report</td>
<td>Interactive Plot</td>
<td>Interactive Plot</td>
<td>Interactive Plot</td>
<td>Interactive Plot</td>
</tr>
<tr>
<td>Interactive Plot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Baseline				
Irradiance	1.00	1.00	1.00	1.00
Temperature		0.49	0.27	1.00
Current	1.00	1.00	1.00	1.00
Voltage	1.00	1.00	1.00	1.00
Power	1.00	0.93	0.24	1.00
Detailed Report	Interactive Plot	Interactive Plot	Interactive Plot	Interactive Plot
Interactive Plot				

![Graphs and Interactive Plots](image)
RTC quality control analysis

Yearly report, daily and monthly metrics

New Mexico

- GHI, DNI, DHI sensors dead
- Daily average
- Monthly average

Vermont

- DC current and DNI sensors dead
- Periodic low normalized efficiency
- String 2 I and V sensors are dead, DC power < 0
- String 2 EPI computed using very little data
Pecos

- Open-source python package
 - Python 2.7, 3.4, or 3.5
 - Revised BSD License
- Software repository
 - https://github.com/sandialabs/pecos
- Documentation
 - http://pecos.readthedocs.io
- Software testing
 - https://travis-ci.org/sandialabs/pecos
- ‘Getting started’ examples included with the software
- Version 0.1.5 (master branch)
 - New features include data acquisition, more flexible dashboards, PD and FAR metrics, compatibility with irregular timestamps, improved efficiency