Field Performance of Bifacial PV Modules and Systems

8th PVPMC Performance Modeling and Monitoring Workshop
Santa Anna Pueblo, New Mexico
May 9-10, 2017

Joshua S. Stein PhD.
Sandia National Laboratories,
Albuquerque, NM USA
Team Acknowledgements

This work is a collaborative project between three institutions

• Sandia National Laboratories
 • Joshua Stein - PI
 • Cliff Hansen
 • Dan Riley
 • Matthew Lave
• National Renewable Energy Laboratory
 • Chris Deline – Co-PI
 • Bill Marion
 • Sarah MacAlpine
• University of Iowa
 • Prof. Fatima Toor
 • Amir Asgharzadeh (graduate student)
Factors Influencing Bifacial PV Performance

- Bifacial PV makes lots of promises. What is the reality?
 - Bifacial performance is affected by many more factors than monofacial PV performance. Our project aims to quantify these effects and generate validated models to predict them.

- Factors that affect irradiance on back (and front) of module
 - Sun position (latitude, season), Tilt and Azimuth
 - Height above ground
 - System size and configuration
 - Albedo and self shading effects
 - Obstructions and shadows, and system size (racking)
 - Snow and soiling factors

- Factors that affect power and energy production
 - Bifacial ratio (back/front module rating)
 - Varies with cell and module design (>90%, >80%, >60%, ~35%)
 - Mismatch effects (may be enhanced by variable rearside irradiance)
3-Yr Bifacial Research Project (FY16-18)
Collaborative project between Sandia, NREL and University of Iowa

Task 1: Measure Outdoor Bifacial Performance

- **Module scale**
 - Adjustable rack IV curves (height, tilt, albedo, and backside shading effects)
 - Spatial variability in backside irradiance
 - Effects of backside obstructions and shading
 - Prism Solar RTC (tilt, orientation, and albedo effects)
 - Vertical bifacial modules at Turku University, Finland (latitude effects)

- **String scale**
 - Fixed tilt rack (tilt, system size, and mismatch effects)
 - Single axis tracker (investigate potential)
 - Two-axis tracker (investigate potential)

- **System scale**
 - String level monitoring on commercial rooftop system (validation data)
3-Yr Bifacial Research Project (FY16-18)

Collaborative project between Sandia, NREL and University of Iowa

Task 2: Develop Performance Models

- Ray tracing methods – Sensitivity studies – Amir Asgharzadeh (Univ of Iowa, PhD Candidate with Prof. Fatima Toor)
- View (Configuration) Factor methods – Cliff Hansen and Dan Riley (Sandia)
- Sara MacAlpine and Bill Marion (NREL)

Task 3: Support Rating Standards

- Support new bifacial rating standard (IEC 60904-1-2) – Chris Deline (NREL)
Module-Scale Adjustable Rack

Holds four modules
- 2 bifacial
- 2 monofacial
Reference Cells
- 2 front facing
- 3 back facing
Multitracer
- measures IV curves and module temps
Variables
- Height
- Tilt
- Albedo
Backside Irradiance Mapping

- Measures 10 irradiances on the back side of a “module”
- “Module” can be moved and mounted anywhere to test different conditions
- Measurement cells calibrated to agree within 0.5%
- Data from the top mounting configuration shown on next slide
Backside Irradiance Mapping

Bottom cells exhibit higher irradiance values in this configuration.

In this test configuration, irradiance on the backside differed by up to 42 W/m² on a sunny day.
Prism Solar RTC Systems

- Systems in New Mexico, Nevada, and Vermont
 - NM: >1 year of data
 - NV: ~4 months of data
 - VT: 37 days of data
- Five orientations at each site
- Optimal racking (no backside shading)
- Module-scale DC monitoring (I and V)
- Data corrected to front flash ratings

<table>
<thead>
<tr>
<th>Label</th>
<th>Orientation</th>
<th>Ground Surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>S15Wht</td>
<td>15° 180° (South)</td>
<td>White gravel</td>
</tr>
<tr>
<td>W15Wht*</td>
<td>15° 270° (West)</td>
<td>White gravel</td>
</tr>
<tr>
<td>S30Nat</td>
<td>30° 180° (South)</td>
<td>Natural</td>
</tr>
<tr>
<td>S90</td>
<td>90° 180° (South)</td>
<td>Natural</td>
</tr>
<tr>
<td>W90</td>
<td>90° 270° (West)</td>
<td>Natural</td>
</tr>
</tbody>
</table>

*W30Wht in VT

Measured Albedo in NM
- Natural = 0.2 – 0.3
- White = 0.5 – 0.6
Prism Solar Results from New Mexico

- Bifacial power gains vary throughout the day.
- Bifacial advantages increase with non-optimal monofacial orientations.
- Bifacial advantages are slightly sensitive to clear vs. cloudy sky conditions.
Prism Solar Results from New Mexico

- Bifacial modules outperformed monofacial in all cases (energy).
- Bifacial energy gains ranged from 17%-132% in NM.
- W-facing vertical bifacial experienced bifacial energy gains over 100% due to cool morning and hotter afternoons.
- Bifacial gains greater in summer (except for W15 and S15, which were flat).
- S90 produced more energy in winter due to low sun elevations.
Prism Solar Results from Nevada

- Bifacial modules outperformed monofacial in all cases (energy).
- Bifacial energy gains ranged from 17%-72% in NV.
- Results are largely similar to what is seen in NM.
 - Exception is W90 gain is lower than in NM.
 - Likely due to lack of data from summer.
Prism Solar Results from Vermont

- Bifacial modules outperformed monofacial in all cases (energy).
- Bifacial energy gains ranged from 16%-97% in VT.
- Effect of high albedo ground can be observed directly since the S30Wht and S30Nat orientations are the same.
 - Result of high albedo ~5% additional energy gain!
- Gains are expected to increase with Summer data is included. (direct irradiance behind the arrays)
Fixed Tilt String-Level Performance

- Four rows at 15°, 25°, 35°, and 45° tilt.
- Each row has two strings of 8 modules (one monofacial and one bifacial).
- Modules are interspersed so rear-side, spatial irradiance bias is minimized.
- Two types of bifacial modules are used:
 - Prism Solar (n-Type c-Si)
 - SunPreme (HJT/HIT)
 - Monofacial modules are from SolarWorld
- Shading effect seen in AM and PM
 - Due to monofacial modules are thicker and shade adjacent bifacial modules (we are going to fix this in the future)

Fixed-tilt String-level Arrays

Preliminary Results

- Prism Solar BG = 6%-10%+, better performance on cloudy days
 - Prism cells have pyramidal texturing, which increases performance in diffuse light.
- SunPreme performance is more variable during clear days and lower on cloudy days. Two possibilities:
 - HIT cells have lower Temp coef than reference modules
 - Lack of cell texturing may reduce diffuse performance
- Bifacial performance appears to benefit significantly from module scale MPPT
 - Non uniform rear side irradiance
- Multi-row array includes self shading effects.
 - Multiple rows
 - Multiple modules per row
Module and Inverters installed
- Row 1: String 1: Sunpreme
- Row 1: String 2: TBD
- Row 2: String 1: Prism Solar
- Row 2: String 2: TBD

Inclinometers, front and back reference cells on each tracker

Tracking issues
- Three photodiodes with shade block control tracker movement
- We are experiencing problems with the tracker starting to move too early ("off-track").

![Bifacial Single Axis Tracker (NM)](image)

![Graphs showing tracker angle over time](image)
Bifacial Single Axis Tracker (NM)

- Potential bifacial energy gains were estimated from front and rear irradiance measurements using reference cells.

 \[BG_E = \frac{\sum (\text{Front} + \text{Rear})}{\sum \text{Front}} - 1 \]

- Potential gains are lowest when tracker is “on-track” ~8%.

Not PV module data!

Best tracking days
Commercial Bifacial System

String level DC performance will be measured on four strings on this NY commercial rooftop bifacial system.
Summary and Future Work

- Bifacial PV offers and delivers significant extra energy per m² of array.
- Bifacial gains vary as a complex function of module characteristics, sun position, tilt and azimuth angles, albedo, system size, and backside obstructions.
- Project goals for 2018 include:
 - Develop and validate predictive models that can evaluate system performance and LCOE. – Balance detail with speed of calculations
 - Publish design guidelines for bifacial PV systems.
 - Publish and compare bifacial performance for different applications.
Questions?

Joshua S. Stein
jsstein@sandia.gov