PVLIB Python Design and
Development

Will Holmgren

Post doc
Department of Atmospheric Sciences
University of Arizona

EPRI-Sandia PV Systems Symposium
May 10, 2016



Goals of this talk

Introduce you to PVLIB Python

Introduce you to modern Python package development practices
Turn you into a PVLIB Python contributor

Turn a few of you into PVLIB Python maintainers

Answer your questions



Outline

What we will cover
e PVLIB Python structure, design philosophy

o  Functions

o Classes
o Modules
o Package

e PVLIB Python development
o Installation in an environment
o git+ GitHub
o Documentation + ReadTheDocs
o Testing + TravisCl

e How PVLIB Python is different from PVLIB
Matlab

How we will cover it

Slides with summaries,
examples, and links

Work through the entire
process of proposing a new
addition to PVLIB Python

What we will not cover

Many modeling examples
How to use Python



PVLIB Python Structure

PVLIB Python is a package.
All code should be organized into modules based on a topic.
The core code, the basic algorithms, should be contained in simple functions.

Doing something simple? Something specific to a corner of the library?
Stop here!

Additional functions can be written to make it easier to use basic functions.
Classes can provide additional structure, abstractions, don’t-repeat-yourself.

Like object oriented programming? Need structure? Use classes!



PVLIB Python Structure

simplified library structure

high level classes ModelChain

base classes PVSystem Location | SingleAxisTracker

core functions

modules




PVLIB Python modeling example

As a teaser, let's model the annual energy yield for a system at a few locations...

http://pvlib-python.readthedocs.io/en/latest/package overview.html#modeling-paradigms



http://pvlib-python.readthedocs.io/en/latest/package_overview.html#modeling-paradigms
http://pvlib-python.readthedocs.io/en/latest/package_overview.html#modeling-paradigms

PVLIB Python Structure: Modules

Code is organized into modules:

clearsky.py
irradiance.py
pvsystem.py
solarposition.py
tmy.py

and more...

https://qithub.com/pvlib/pvlib-python/tree/master/pvlib

http://pvlib-python.readthedocs.io/en/latest/modules.html



https://github.com/pvlib/pvlib-python/tree/master/pvlib
https://github.com/pvlib/pvlib-python/tree/master/pvlib
http://pvlib-python.readthedocs.io/en/latest/modules.html
http://pvlib-python.readthedocs.io/en/latest/modules.html

PVLIB Python Structure: Modules

modules contain functions and classes

pvsystem.py irradiance.py
sapm haydavies
snlinverter perez
singlediode disc
PVSystem total_irrad

AN

Capitalization tells you it’s a class (we follow PEPS8)


https://github.com/pvlib/pvlib-python/blob/master/pvlib/irradiance.py
https://github.com/pvlib/pvlib-python/blob/master/pvlib/irradiance.py
https://github.com/pvlib/pvlib-python/blob/master/pvlib/irradiance.py
https://github.com/pvlib/pvlib-python/blob/master/pvlib/pvsystem.py
https://github.com/pvlib/pvlib-python/blob/master/pvlib/pvsystem.py
https://github.com/pvlib/pvlib-python/blob/master/pvlib/pvsystem.py
https://www.python.org/dev/peps/pep-0008/

PVLIB Python Structure: Functions

All essential code is contained in basic functions.

Functions are simple. Functions are safe. Functions are great! (are — should be)

def

def

snlinverter (inverter, v _dc, p dc):
LI |

Converts DC power and voltage to AC power using Sandia's
Grid-Connected PV Inverter model.

spa python(time, latitude, longitude,
altitude=0, pressure=101325, temperature=12, delta t=None,
atmos refract=None, how='numpy', numthreads=4):
Calculate the solar position using a python implementation of the
NREL SPA algorithm described in [1].



PVLIB Python Structure: Functions

def ineichen(time, latitude, longitude...)

I0 = irradiance.extraradiation (time.dayofyear)

if zenith data is None:
ephem data = solarposition.get solarposition(time,
latitude=latitude,
longitude=longitude,
altitude=altitude,
method=solarposition method)
time = ephem data.index # fixes issue with time possibly not being tz-aware
try:
ApparentZenith = ephem data['apparent zenith']
except KeyError:
ApparentZenith = ephem data['zenith']
logger.warning ('could not find apparent zenith. using zenith')
else:
ApparentZenith = zenith data

if linke turbidity is None:
TL = lookup linke turbidity(time, latitude, longitude,
interp turbidity=interp turbidity)
else:
TL = linke turbidity

# Get the absolute airmass assuming standard local pressure (per
# alt2pres) using Kasten and Young's 1989 formula for airmass.

if airmass_data is None:

AMabsolute = atmosphere.absoluteairmass(airmass_ relative=atmosphere.relativeair:
pressure=atmosphere.alt2pres(altitude))

else:
AMabsolute = airmass_data

There’s a lot going on in ineichen beyond
simply implementing the model.

Maybe we should fix this!

https://github.com/pvlib/pvlib-python/issues/155

O This repository Pull requests Issues  Gist A+ @-
pvlib / pvlib-python @Unwatch~ 28 sUnstar 3¢  YFork 40
Code  (@lssues 24 Pull requests 7 Wiki Pulse Graphs Settings

simplify the clearsky.ineichen function L e issue |

RSXTEN wholmgren opened this issue 2 hours ago - 0 comments.

@ wholmgren commented 2 hours ago pviib member Labels
o

| think that clearsky.ineichen is a disaster of a function. There's some unnecessary complexity inherited I

=

from PVLIB Matlab, and some additional complexity that | wrongly added
In the spirit of simple functions, | think we should: Milestone

« removethe time, latitude, location arguments in favor of apparent_zenith 0.4.0
« make airmass arequired argument
« remove the ability for the function to calculate it's own solar position and airmass Assignes
« remove the abilit for the function to look up linke turbidity
No one—assign yourselt
The Location class's get_clearsky method, o similar, can provide the higher-level features.
Notifications

My simplified solis PR #148 might provide some inspiration.
«x Unsubscribe

You're receiving notifications.

© @ wholmgren added api [ labels 2 hours ago because you authored the thread,
1 participant
% @ wholmgren modified the milestone: 0.4.0, Santa Clara sprint 2 hours ago a


https://github.com/pvlib/pvlib-python/issues/155
https://github.com/pvlib/pvlib-python/issues/155

PVLIB Python Structure: A problem

We want to write simple, self-contained functions that are easy to understand.

We want to write functions that are easy to use.

‘I want to know the airmass as a function of zenith angle.” - easy to use, easy to
understand

‘I want to know the airmass as a function of the date and time for my point on the
Earth.” - easy to use, fairly easy to understand

“| want a function that lets me do either of the above.” - harder to use, harder to
understand.

“Oh, and | want to be able to choose among many different airmass models” - :(



PVLIB Python Structure

Maybe we can use classes to provide broader functionality that is still easy to understand.

high level classes

base classes

core functions

modules

ModelChain

PVSystem

Location | SingleAxisTracker




PVLIB Python Structure: Classes

Classes and objects can provide convenient abstractions.

class PVSystem(object) :

The PVSystem class defines a standard set of PV system attributes
and modeling functions. This class describes the collection and
interactions of PV system components rather than an installed system
on the ground. It is typically used in combination with

:py:class: ~pvlib.location.Location ™ and

:py:class: ~pvlib.modelchain.ModelChain"

objects.

class Location (object):
mwwn
Location objects are convenient containers for latitude, longitude,
timezone, and altitude data associated with a particular
geographic location. You can also assign a name to a location object.

pvlib-python/issues/17
pvlib-python/pull/93

Replaces and expands on
PVLIB MATLADB’s location
struct

https://qithub.com/Sandia-
Labs/PVLIB Python/pull/26

PVLIB Python uses classes to separate intrinsic and extrinsic data.


https://github.com/Sandia-Labs/PVLIB_Python/pull/26
https://github.com/Sandia-Labs/PVLIB_Python/pull/26
https://github.com/Sandia-Labs/PVLIB_Python/pull/26
https://github.com/pvlib/pvlib-python/issues/17
https://github.com/pvlib/pvlib-python/issues/17
https://github.com/pvlib/pvlib-python/pull/93
https://github.com/pvlib/pvlib-python/pull/93

PVLIB Python Structure: PVSystem class

class PVSystem(object) :

mwoan

The PVSystem class defines a standard set of PV system attributes pvlib—pvthon/issues/17
and modeling functions. This class describes the collection and .
interactions of PV system components rather than an installed system Dvhb-pvﬂ1on/pu”/93

on the ground.

def init (self,
surface tilt=0, surface azimuth=180, ObjeCt ConStrUCtor
albedo=None, surface type=None, . . .
= accepts intrinsic data.

module=None, module parameters=None,
series modules=None, parallel modules=None,

inverter=None, inverter parameters=None, data aSSigned as
racking model='open rack cell glassback', .
*kwargs) : attributes
def get irradiance(self, solar zenith, solar azimuth, dni, ghi, dhi,
dni_extra=None, airmass=None, model='haydavies', methOdS accept
**kwargs) : extrinsic data

def sapm(self, poa direct, poa diffuse,
temp cell, airmass_absolute, aoi, **kwargs):

many more methods not shown here


https://github.com/pvlib/pvlib-python/issues/17
https://github.com/pvlib/pvlib-python/issues/17
https://github.com/pvlib/pvlib-python/pull/93
https://github.com/pvlib/pvlib-python/pull/93

PVLIB Python Structure: PVSystem class

PVSystem.snlinverter method

class PVSystem(object) : is a wrapper around the
snlinverter function.

def snlinverter(self, v _dc, p dc):

"""Uses :func: snlinverter® to calculate AC power based on 2 Variable arguments
‘self.inverter parameters’  and the input parameters.
Parameters

See pvsystem.snlinverter for details

return snlinverter (self.inverter parameters, v_dc, p_dc) 1 constant System argument’ 2
variable arguments



PVLIB Python Structure: Location class

class

Location objects are convenient containers for latitude,

Location (object) :

timezone, and altitude data associated with a particular

geographic location.

def init (self, latitude, longitude, tz='UTC', altitude=0,
name=None, **kwargs):

@classmethod

def from tmy(cls, tmy metadata, tmy data=None, **kwargs):

def

def

def

Create an object based on a metadata
dictionary from tmy2 or tmy3 data readers.

get solarposition(self, times, pressure=None, temperature=12,
**kwargs) :
Uses the :py:func: solarposition.get solarposition” function

to calculate the solar zenith, azimuth, etc. at this location.

get clearsky(self, times, model='ineichen',6 **kwargs):
Calculate the clear sky estimates of GHI, DNI, and/or DHI
at this location.

get airmass(self, times=None, solar position=None,
model="kastenyoungl989") :
Calculate the relative and absolute airmass.

longitude,

You can also assign a name to a location object.

Replaces and expands on
PVLIB MATLAB's location
struct

Construct a Location object
from a TMY file

Automatically propagates
altitude

1 variable argument, fills in
the intrinsic data needed by
the ineichen function

Calculates both relative and
absolute airmass



PVLIB Python Structure: ModelChain class

The ModelChain is a new, experimental, high-level class

class ModelChain (object) :

An experimental class that represents all of the modeling steps
necessary for calculating power or energy for a PV system at a given

location.

def init (self, system, location, .
orientation strategy='south at latitude tilt', pvlib-python/pull/151
clears kY_mOde 1="ineichen’ 4 refactor ModelChain. add SingleDiode modelchain Edx
transposition model='haydavies', ] meotmre e e o o N - O
solar position method='nrel numpy', Fomarn @ | commo 8 ’ -
airmass model='kastenyoungl989"', [ e ————

n class with subclasses SAPM and SingleDiode

**kwargs) : DR — e vetie —

def run model (self, times, irradiance=None, weather=None) : e

Notifications.

1 participant

LR K


https://github.com/pvlib/pvlib-python/pull/151
https://github.com/pvlib/pvlib-python/pull/151

PVLIB Python Structure: ModelChain class

The ModelChain is a new, experimental, high-level class

class ModelChain (object) :
def run model (self, times, irradiance=None, weather=None) :

# ...lots of stuff above here..

self.temps = self.system.sapm celltemp(self.total irrad['poa global'],
self.weather['wind speed'],
self.weather['temp air'])

pvlib-python/pull/151

. . - . refactor ModelChain. add SingleDiode modelchain Edit
self.aol = self.system.get aoi(self.solar position['apparent zenith'], ] whotmcren vants o mrge s commis o %wm, —
4 4 ] 4 ]
self.solar position['azimuth']) e ® | ot ® B L, i
_ _ 8 — : = i
self.dc = self.system.sapm(self.total irrad['poa direct'], wl
—_ —_ I refactored ModelChain into a parent ModelChain class with subclasses SAPM and SingleDiode
self.total irrad['poa diffuse'], S —— B
\ ; oda{Chaa:prepareCifpis) an ths method s caled during [FrCesdel —
self.tgmps[ temp_cell 1, -
self.airmass['airmass absolute'], 8 vctgron wisos SR v
_ -
self.aoi) % @ whoimoren acdad s o the 040 Noon
) W = 4x Unsubscribe
self.ac = self.system.snlinverter (self.dc['v mp'], self.dc['p mp']) .
x
v a

return self


https://github.com/pvlib/pvlib-python/pull/151
https://github.com/pvlib/pvlib-python/pull/151

PVLIB Python Structure: LocalizedPVSystem class

The LocalizedPVSystem is a new, experimental, high-level class that inherits all
methods from PVSystem and Location.

class LocalizedPVSystem (PVSystem, Location):

The LocalizedPVSystem class defines a standard set of installed PV
system attributes and modeling functions. This class combines the
attributes and methods of the PVSystem and Location classes.

See the :py:class: PVSystem class for an object model that
describes an unlocalized PV system.

mwiiewn

def  init (self, pvsystem=None, location=None, **kwargs):

Useful? More trouble than it's worth?



PVLIB Python Installation: Python

Many ways to get Python, many ways to get PVLIB Python.
Easiest way is the Anaconda Python distribution + conda package manager.

Anaconda comes with a bunch of numerical and scientific libraries preinstalled.

www.continuum.io

PVLIB Python Installation Guide: http://pvlib-python.readthedocs.io/en/latest/installation.html



http://www.continuum.io
http://www.continuum.io
http://pvlib-python.readthedocs.io/en/latest/installation.html

PVLIB Python Installation: Python

How you install PVLIB Python depends on how you want to use PVLIB Python.

Do you want to use the pvlib-python as-is, or do you want to be able to edit the source code?
If you want to use pvlib-python as-is, follow the simple Install standard release instructions.
If you want to be able to edit the source code, follow the Install as an editable library instructions.

Installing pvlib-python is similar to installing most scientific python packages, so see the References
section for further help.

PVLIB Python Installation Guide: http://pvlib-python.readthedocs.io/en/latest/installation.html



http://pvlib-python.readthedocs.io/en/latest/installation.html

PVLIB Python Installation: PVLIB Python

“I don’t care about modifying the source code, | only want to use PVLIB Python to
solve my problem.”

With the Anaconda Python distribution...
conda install pvlib -c pvlib
With any other Python distribution...
pip install pvlib

Don’t use sudol!!!

PVLIB Python Installation Guide: http://pvlib-python.readthedocs.io/en/latest/installation.html



http://pvlib-python.readthedocs.io/en/latest/installation.html

PVLIB Python Installation: PVLIB Python

“I want to play with the source code and maybe even contribute to the library.”

Installing pvlib-python as an editable library involves 3 steps:
1. Obtain the source code — GitHub

2. Set up a virtual environment — conda
3. Install the source code — pip

PVLIB Python Installation Guide: http://pvlib-python.readthedocs.io/en/latest/installation.html



http://pvlib-python.readthedocs.io/en/latest/installation.html

3 steps to git proficiency

1. Read the git documentation!

https://git-scm.com and https://help.github.com

2. Struggle with it!

https://git-scm.com and https://help.github.com

3. Read it again!


https://git-scm.com
https://help.github.com
https://git-scm.com
https://git-scm.com
https://help.github.com
https://git-scm.com

A brief git+GitHub explanatio

your-username/pvlib-python bmu/pvlib-python

% @\i
alorenzo175/pvlib-python ~— pvlib/pvlib-python wholmgren/pvlib-python
or

fork

clone,
fetch, fetch,
pull pull
https://git-scm.com

https://help.qgithub.com ~/Documents/pvlib-python



https://git-scm.com
https://git-scm.com
https://help.github.com
https://help.github.com

A brief git+GitHub explanatio

your-username/pvlib-python bmu/pvlib-python

o)
,@
\ QQi \PRs
alorenzo175/pvlib-python —= pvlib/pvlib-python = wholmgren/pvlib-python

A
clone,
fetch, fetch, push
pull, pull
https://qit-scm.com

https://help.qgithub.com ~/Documents/pvlib-python



https://git-scm.com
https://git-scm.com
https://help.github.com
https://help.github.com

Getting PVLIB Python with git and GitHub

Instructions on how to use GitHub Desktop from our installation guide...

Follow these steps to obtain the library using git/GitHub:

1. Download the GitHub Desktop application.

2. Fork the pvlib-python project by clicking on the “Fork” button on the upper right corner of the
pvlib-python GitHub page.

3. Clone your fork to your computer using the GitHub Desktop application by clicking on the Clone
to Desktop button on your fork’s homepage. This button is circled in the image below. Remember
the system path that you clone the library to.

A lot of people like GitHub Desktop. | prefer to use the command line.

PVLIB Python Installation Guide: http://pvlib-python.readthedocs.io/en/latest/installation.html



http://pvlib-python.readthedocs.io/en/latest/installation.html

Getting PVLIB Python with git and GitHub

GitHub Desktop Preferences panel has an “Install Command Line Tools” button.

After forking the main pvlib-python GitHub repository...

# with https...
$ git clone https://github.com/wholmgren/pvlib-python.git

# with ssh...
$ git clone git@github.com:wholmgren/pvlib-python.git

| use an ssh key with GitHub. No need to enter passwords!

PVLIB Python Installation Guide: http://pvlib-python.readthedocs.io/en/latest/installation.html



http://pvlib-python.readthedocs.io/en/latest/installation.html
https://github.com/pvlib/pvlib-python
mailto:git@github.com
https://help.github.com/articles/generating-an-ssh-key/

Add a git remote for the main repo

Teaches your git checkout about another source of data.

$ git
git

$ git
origin
origin
pvlib
pvlib

# now
$ git
$ git
$ git
$ git
Freedom t

remote add pvlib git@github.com:pvlib/pvlib-python.

remote -v
git@github.com:wholmgren/pvlib-python.git (fetch)
git@github.com:wholmgren/pvlib-python.git (push)
git@github.com:pvlib/pvlib-python.git (fetch)
git@github.com:pvlib/pvlib-python.git (push)

you can do one or all of
fetch pvlib

rebase pvlib/master
merge pvlib/master

ﬁull pvlib master
rough git verbs!

PVLIB Python Installation Guide: http://pvlib-python.readthedocs.io/en/latest/installation.html



http://pvlib-python.readthedocs.io/en/latest/installation.html
mailto:git@github.com

Create a conda environment for pvlib

Environments make it possible to use multiple versions and package configurations
on top of one Python installation.

Useful for users, essential for developers.

$ conda create --name pvlibdev python=3.5 pandas scipy
S source activate pvlibdev
$ conda list

# optional
S conda install jupyter ipython matplotlib seaborn nose flake8

PVLIB Python Installation Guide: http://pvlib-python.readthedocs.io/en/latest/installation.html



http://pvlib-python.readthedocs.io/en/latest/installation.html

Install the source code

Installing in “development mode” creates an alias/symlink/shortcut from your local
folder to your environment’s Python package listing.

$ pip install -e pvlib-python

# alternatively
cd pvlib-python
S python setup.py develop

U

Google “python site packages” and “pip development install” for more.

PVLIB Python Installation Guide: http://pvlib-python.readthedocs.io/en/latest/installation.html



http://pvlib-python.readthedocs.io/en/latest/installation.html

Contributing: Fix a problem or add a new feature

Find or make a new issue on GitHub.

Make a new glt branch. s git branch changes; $ git checkout changes
Make changes.

Test changes. s nose

Make and test documentation s cd docs/sphinx; make html

Commit Changes. S git commit -a -m ‘my changes’

Push changes. s git push

Make a Pull Request.

©®NO O LN~

We’'re going to walk through this by porting pvl_erbs.m to Python.

PVLIB Python Contributing Guide: http://pvlib-python.readthedocs.io/en/latest/contributing.html



https://github.com/pvlib/pvlib-python/issues
http://pvlib-python.readthedocs.io/en/latest/contributing.html

Contributing: Make/find an issue on GitHub

Admitting there is a problem is the first step!

Consider using the milestones and labels.

Issues labeled easy are good for beginners.

Making a new issue is not required, but is often a good idea.
Please don’t be afraid to make an issue!

Please comment on existing issues, too.

PVLIB Python Contributing Guide: http://pvlib-python.readthedocs.io/en/latest/contributing.html



https://github.com/pvlib/pvlib-python/issues?q=is%3Aissue+is%3Aopen+label%3Aeasy
http://pvlib-python.readthedocs.io/en/latest/contributing.html

Contributing: Make a new git branch

$ git branch changes
$ git checkout changes
# or in one step...

$ git checkout -b changes

Branches are not required, but usually a good idea.

Branches use almost no disk space (very different from CVS/SVN)

PVLIB Python Contributing Guide: http://pvlib-python.readthedocs.io/en/latest/contributing.html



http://pvlib-python.readthedocs.io/en/latest/contributing.html

Contributing: Make the changes

Porting pvl_erbs.m to PVLIB Python...

PVLIB Python Contributing Guide: http://pvlib-python.readthedocs.io/en/latest/contributing.html



http://pvlib-python.readthedocs.io/en/latest/contributing.html

Contributing: Test the changes

PVLIB Python has a lot of tests. Not enough, but a lot.
We will not accept code that is not rigorously tested.

90% of the code is executed by the test suite.

Most of the remaining 10% is difficult to automatically test (e.g. dialog boxes,
versioning).

Two kinds of tests:

1. Does it crash? Usually easy to test.
2. Does it give the right result? Usually annoying, but important.

PVLIB Python Contributing Guide: http://pvlib-python.readthedocs.io/en/latest/contributing.html



https://coveralls.io/github/pvlib/pvlib-python
https://coveralls.io/github/pvlib/pvlib-python
http://pvlib-python.readthedocs.io/en/latest/contributing.html

Contributing: Test the changes

from test_tracking.
N 9P Simple case of a single axis tracker oriented

North-South.

def test solar noon():
apparent zenith = pd.Series([10])
apparent azimuth = pd.Series([180])
tracker data = tracking.singleaxis (apparent zenith, apparent azimuth,
axis tilt=0, axis azimuth=0,
max angle=90, backtrack=True,
gcr=2.0/7.0)

expect = pd.DataFrame({'aoi': 10, 'surface azimuth': 90,
'surface tilt': 0, 'tracker theta': 0},

index=[0], dtype=np.float64)

assert frame equal (expect, tracker data)

PVLIB Python Contributing Guide: http://pvlib-python.readthedocs.io/en/latest/contributing.html



http://pvlib-python.readthedocs.io/en/latest/contributing.html

Contributing: Test the changes

Run the tests locally using the Nose package

# execute all modules and functions that contain *test*
S nose

# only run some tests, print test names
$ nose pvlib/test/test clearsky -v

Later, we'll see how TravisCl automatically runs the tests for all Pull Requests.

PVLIB Python Contributing Guide: http://pvlib-python.readthedocs.io/en/latest/contributing.html



http://pvlib-python.readthedocs.io/en/latest/contributing.html

Contributing: Make and test documentation
Only needed if you’'ve made extensive changes to the documentation.

$ conda install sphinx sphinx rtd theme
$ cd docs/sphinx
$ make html

Documentation will be created in docs/sphinx/build/html
Improving the documentation is a great way to contribute!

Later, we’ll see how we can use readthedocs to build and host the documentation.

PVLIB Python Contributing Guide: http://pvlib-python.readthedocs.io/en/latest/contributing.html



http://pvlib-python.readthedocs.io/en/latest/contributing.html

Contributing: Commit the changes

Tell git what what you've done

$ git status

S git add filel.py file2.py
$ git commit -m ‘my changes’
S git log

# print stackoverflow’s nice git tree
$ git lg

PVLIB Python Contributing Guide: http://pvlib-python.readthedocs.io/en/latest/contributing.html



http://pvlib-python.readthedocs.io/en/latest/contributing.html
http://stackoverflow.com/questions/1057564/pretty-git-branch-graphs

Contributing: Push changes to GitHub

Push your changes to your GitHub repository
$ git push

# will not work if you’re working on a new branch
# copy/paste the command that it prints, e.g.

$ git push --set-upstream changes

A copy of the new code now lives on the GitHub servers.

PVLIB Python Contributing Guide: http://pvlib-python.readthedocs.io/en/latest/contributing.html



http://pvlib-python.readthedocs.io/en/latest/contributing.html

Contributing: make a Pull Request

Pull requests are a mechanism for proposing changes to a repository.

You can make a Pull Request even if your code isn’t yet complete, like asking for
comments on a draft.

Maybe you think you're a bad programmer that writes crappy code and you don'’t
want be embarrassed.

| *know™ that I'm a bad programmer that writes crappy code and I've been worried
about being embarrassed too!

Propose the code, and we’ll make it better together.

PVLIB Python Contributing Guide: http://pvlib-python.readthedocs.io/en/latest/contributing.html



http://pvlib-python.readthedocs.io/en/latest/contributing.html

Contributing: readthedocs

The readthedocs service will automatically build your documentation if you
authorize it.

Example...

PVLIB Python Contributing Guide: http://pvlib-python.readthedocs.io/en/latest/contributing.html



http://pvlib-python.readthedocs.io/en/latest/contributing.html

Contributing: TravisCI

The TravisCl service will automatically test your Pull Request.

Tests against multiple versions of Python and the minimum versions of the
required dependencies.

It will also test your branches if you authorize it to.
Appveyor is a similar service, but it runs on Windows instead of Linux.

Example...

PVLIB Python Contributing Guide: http://pvlib-python.readthedocs.io/en/latest/contributing.html



http://pvlib-python.readthedocs.io/en/latest/contributing.html

Concluding thoughts/questions

What's missing from PVLIB Python?

What's in PVLIB Python that shouldn’t be?

Is PVLIB Python trying to be too many things to too many people?
Should PVLIB Python continue to depend heavily on Pandas?

Can you help make PVLIB Python better?

Is there anything preventing you from contributing to PVLIB Python?

This is your library, not mine. If you don'’t like something, change it and share it!
PV modeling is far too broad for one person to write a great library.

Open source enables reproducible science and engineering.



Thanks to

The Sandia PVLIB team
The PVLIB community
WH thanks the DOE EERE Postdoctoral Fellowship Program

U Arizona team thanks Tucson Electric Power, Arizona Public Service, the SVERI
utilities, and the UA Renewable Energy Network https://sveri.uaren.org/

EPRI and Southern Company Services for funding the forecasting tools.


https://sveri.uaren.org/

backup, unused, discarded slides...



PVLIB Python Structure: Functions

Some functions choose among several other functions

def total irrad(surface tilt, surface azimuth,

def

apparent zenith, azimuth,

dni, ghi, dhi, dni extra=None, airmass=None,

albedo=.25, surface type=None,

model="'isotropic',

model perez='allsitescompositel990', **kwargs):
L

Determine diffuse irradiance from the sky on a
tilted surface.

get solarposition(time, latitude, longitude,
altitude=None, pressure=None,
method="'nrel numpy',
temperature=12, **kwargs):
mwiww

A convenience wrapper for the solar position calculators.



