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New market of the supdrigh-efficiency solar cells

BIPV / VIBV / IIPV

Solar module for automotive applications
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Majority come from low angles (30—60")
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» New static low concentrator was proposed for the
automotive application. L

» Prototype module was fabricated by usmg cuttlng
tool for lens processing

T. Masuda et al, Toyota, Susono, Japan
K. Araki & M. Yamaguchi, TTI, Nagoya, Japan

+ Characteristics of lens is in good
agreement with calculated results. |

4D0.4.6 Solar Powered Vehicles with Static Concentrator Photovoltaics

\ New static concentrator is required Incident angle (deg)
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A highlighted topic of the most
recent world conference of PV
(EMPVSEC in September, 2017)

Innovation: Highefficiency PV on the capof
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Merit: 70 % of the car (< 30 km/day) will
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Requirement:More than 30 % of efficiency

Simply multiplying 70 % to the annual sales of the car, the market size will be 50 GW/



Solar-driven car will create a new
iIndustry and change our society.

Solardriven cars
70 % of the cars, 50 GW/of the new creation of the market, 8 % reduction of GHG emissio



Market of the cairoof PV, now and future
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180 W Si module 1 kW highefficiency module

Saving cycles of electricity charge .

g Driven by the solar energy

Efficiency and energy is not critical.
Driver will be satisfied if the PV fills the
battery during parking. l

— Both efficiency and energy yield are critical.

Beside the panel performance, smart control and
accurate prediction of the energy yield will be require



Data acquisition by the car

GPS/Gyro (Position, direction, and speed)
Map data (position and shading prediction)

GHI, DNI' Drive recorder (Shading prediction)
Atmospheric parameters Battery status

(fitted from spectrum "
data) / Qu- Q.

Position of the station Energy prediction
Local weather forecasts Removal of outliners and&N

Data from stations

® Auto-correlation & cross
correlation

Weighting factors by relative
=9 position

~ Spectrum prediction
Irradiance prediction

\

Energy info. managemens=,
Smart advice to the driver
(necessity of stopping to the station etc.,)




Required technology relevant to this workshop.

1. Irradiation on the caroof as well as casides
1. Modeling GHI relative to the GHI on the rdop
2. Dynamic modeling incl. shading and reflection by surrounding buildings and roads
3. Direct measurement and its comparison to the roob irradiation
4. Shading prediction by the image from the drive recorder
Spectrum prediction of the spectrum (to MJ cells)
3. Power output prediction from the canoof array.
1. Correction by the partial shading
2. Correction by the curved surface (incl. mismatching)
3. Power generation modeling and its measurement proof
4. Modeling of unwanted days (not clear sky)
Interpolation and autocorrelation using multiple observation points
LCQOckm
1. Definition and measurement proof
2. World database
6. Standardization
1. DOT
2. |EC standards
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Development of the energy model is on the way, but it is in the good shape.

Outdoor validation of the model by a
prototypedhigh-efficiency module
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Presented at the 27T PVSEC in three weeks ago.



Most of the solar cells have reached almost the potential limit. Most of the

solar cells do not meet the requirements.

Minimum requirement = 30 % considering restate, irradiation and cagesign.
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Module Efficency (%)

Only MJ cell can meet the requirement.

Si

-V (GaAs)

-V (33)*

-V (53)*

IV on Si

CIGSe

CdTe

QD

Perovskite

Potential

28.5 %

29.7 %
42 %
43 %

38.0 %
26.5 %
26.5 %
25.8 %
24.9 %

Achieved

26.7 % (94 %

28.8 % (97 %

37.9 % (90 %

38.8 % (90 %

35.9 % (94 %

22.6 % (85 %

22.1 % (83 %

13.4 % (52 %

22 1 % (89 %)

* Non-concentrator
** Not stabilized
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Ash Hint: Can you find a solution that satisfies

Vi(d)+Va(H)+V5($)=0 and J=4=1 ?




Spectrum Issue
Rating or Prediction?



History of the spectrum recognition to higficiency MJ cells

1997 Low concentration of J I}V cells were tested 2003 28 %, 400 X and 150 W module
outside in USAKurtsand her group recognized the CA was demonstrated and significant
of the optics induced the spectrum mismatching loss. spectrum mismatching loss was

2002 It was calculated that the increase of the number of reported.

junctions will not promise to increase the annual

energy yield.
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Site: Toyohashi, Japan
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279% at28C--28.1% at25C

This module is still monitored and generating powe
in Tsuyama\ational Institute of technology, Japan
and possibly the oldest living CPWIinodule.



History of the spectrum recognition to higfficiency MJ cells

1997 Low concentration of J 14V cells were tested 2003 28 %, 400 X, 3J and 150 W modul
outside in USAKurtsand her group recognized the CA was demonstrated and significant
of the optics induced the spectrum mismatching loss. spectrum mismatching loss was
2002 It was calculated that the increase of the number of reported.
junctions will not promise to increase the annual
energy yield.
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3J cell rather than 4J cells In research
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After field experiences of CPV power plant, the spectrum issue became the common knowledge. But tl
most of the studies was done only considering AM using a standard air conditions, except for the work
Chen in Imperial College.



Our new approach
(Energy prediction)
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NEDO spectrum
database

DNI, GTI, GHI Y
Calculation of ”

Parameter fitting
to GHI spectrum

Naganuma, Tosu, Tsukuba,
Gifu, Okinoerabu

Miyazaki

Measurement of
DNI spectrum
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Parameter fitting
to DNI spectrum

Distribution of
Atmospheric
parameters

Outside Japan
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Although, slight skewness and biasness - A
remain, the fluctuation of the air optical : ¥
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Water precipitation (cm)
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Fitting and smoothing by segmented polynomials
using the local least square error method

Although, slight skewness and biasness remain,
the fluctuation of the air optical parameters can
be modeled by a random number distributed by

the normal distribution around the seasonal trend.
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Other information for examining uncertainty of the energy
generation influenced by spectrum fluctuation
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= Seasonal fluctuation of atmospheric paremeters

= Daily fluctuation of atmospheric parameters

Airmass + Daily fluctuation of
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Application of the
spectrum prediction.



Monte-Carlo method to predict spectrum influence
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Repeat > 100 years
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Generates histogram and
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OnSiI tandem, 2erminal or 4terminal
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Which is the best number of junctions?
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