



| pvlib 2023 update:<br>pvlib-python, pvanal<br>twoaxistracking                                                         | ytics,                                                                                                                 | DNV                 |
|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------|
| <b>pvlib-python</b><br>Cliff Hansen (Sandia)<br>Kevin Anderson (Sandia)<br>Will Holmgren (DNV)<br>Mark Mikofski (DNV) | <b>pvanalytics</b><br>Cliff Hansen (Sandia)<br>Will Vining (Sandia)<br>Kevin Anderson (Sandia)<br>Kirsten Perry (NREL) |                     |
| Adam R. Jensen (DTU)<br>Anton Driesse (PV Performance Labs)                                                           | <b>twoaxistracking</b><br>Kevin Anderson (Sandia)<br>Adam R. Jensen (DTU)                                              | PV Performance Labs |

PV Performance Modeling and Monitoring Workshop Salt Lake City, May 9, 2023

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

| Contents |
|----------|
|----------|

| 1 | What is pvlib?                                   |
|---|--------------------------------------------------|
| 2 | What is pvlib python                             |
| 3 | Documentation and Tutorials                      |
| 4 | Community                                        |
| 5 | Enhancements since PVPMC 2022                    |
| 6 | What's next?                                     |
| 7 | Introductions to pvanalytics and twoaxistracking |



## What is pvlib?

A python ecosystem of compatible packages for PV systems modeling and analysis that are **community-driven**, **free**, **open-source**, and **well-documented** 

## pvlib-python

Library of functions for weather-to-power modeling

Customizable end-to-end PV system modeling (ModelChain)

Batteries-included data import library

## pvanalytics

Library of functions for analysis of data from PV systems

Filtering and quality checks

Feature recognization: e.g., label inverter clipping

## twoaxistracking

Simulate two-axis tracking solar collectors

Emphasis on self-shading

Find us at: <a href="https://github.com/pvlib">https://github.com/pvlib</a>



## What is pylib python?

## A python library for PV performance modeling

## Modeling Toolbox

#### Stand-alone models for:

Atmosphere Solar position Transposition Bifacial Temperature Clear-sky

Soiling Shading I-V curves Inverters IAM

Snow

...and more!

## Weather-to-power workflow

Customizable end-to-end PV system modeling (ModelChain)

Scriptable and automatable by design

## Data I/O

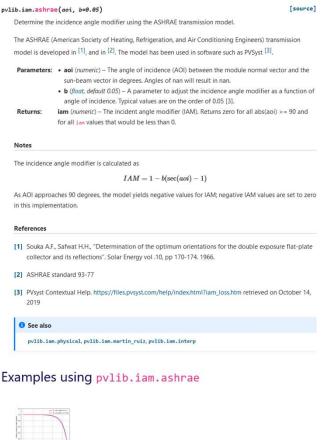
# Batteries-included data import:

| TMY        | SURFRAD    |  |
|------------|------------|--|
| EPW        | SOLRAD     |  |
| NSRDB      | MIDC       |  |
| PVGIS      | BSRN       |  |
| CAMS       | UO SRML    |  |
| ECMWF MACC | NOAA USCRN |  |



## pvlib python Documentation: Model Descriptions

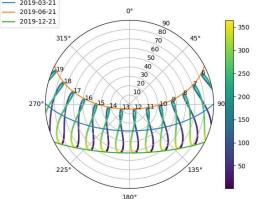
Each model function has a page with:


- Brief model description
- Inputs: description, data types, units
- Outputs: description, date types, units
- Published reference(s) for the model
- Links to other relevant functions
- Links to relevant gallery examples
- Other notes as needed

Several hundred model-level pages, all built automatically from in-code documentation

https://pvlib-python.readthedocs.io

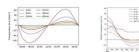
#### pvlib.iam.ashrae


Diffuse IAM Calculation





## pvlib python Documentation: Example Gallery


pvlib "cookbook" -- small self-contained scripts for various modeling tasks, intended as a starting point for your own code.



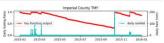
Want to make cool plots like this one? Check out the example gallery!

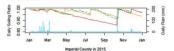
https://pvlib-python.readthedocs.io/en/stable/gallery/index.html

# <figure><figure><table-container><table-container><table-container><table-container><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row>



Modeling with interval Modeling Transposition averages Gain




HSU Soiling Model Example

References

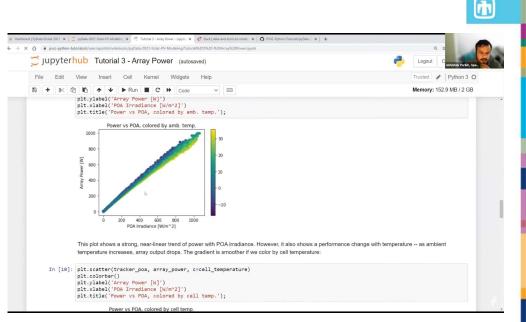
(1)(1,2,3) M.Co

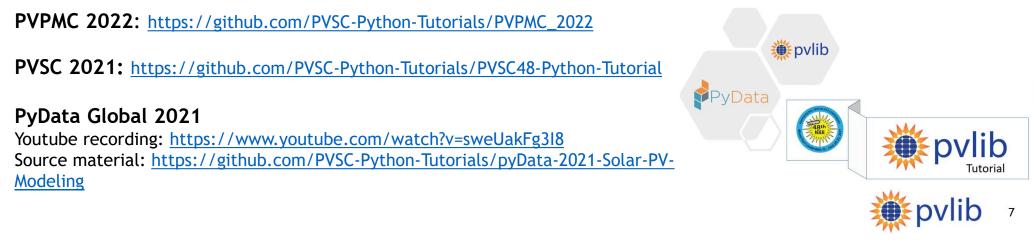




Note that this figure shows additional timesenes not calculated here: modeled soiling ratio using the 2015 PRISN rainfall dataset (prange) and measured soiling ratio (dashed green).




# pvlib python: Tutorials


Interactive tutorials for:

- Modeling concepts
- Implementation in pvlib

The next one is here, tomorrow afternoon! Led by Adam Jensen and Kevin Anderson

50<sup>th</sup> IEEE PVSC (11 June 2023), led by Silvana Ovaitt and Mark Mikofski





## pvlib python: Community Growth

# **Google Group** (user discussion, announcements)

- 600+ 700+ members
- https://groups.google.com/g/pvlib-python

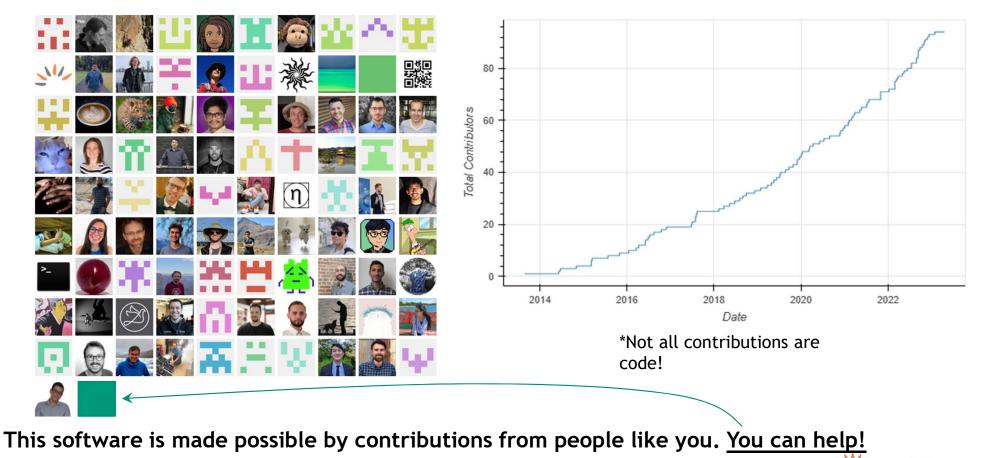
GitHub (code development)

- Code contributions from <del>80+</del> 90+ people
- <u>https://github.com/pvlib/pvlib-python</u>

## Citations

- 300+ since 2022
- Influence outside of PV modeling, e.g.,

J. Rowland et al., *Scale-dependent influence of permafrost on riverbank erosion rates*. ESS Open Archive. February 09, 2023.


#### Cumulative views since release date (2022-06-15 to 2023-04-17) 1.000e+5 v0.9.1 (partial) - v0.9.2 v0 9 3 8.000e+4 otal page views - v0.9.4 v0.9.5 6.000e+4 4.000e+4 2.000e+4 0.000e+0 20 40 60 80 100 120 140 0 Days since release

pvlib python documentation page views



## 10k page views / month

## pvlib python: GitHub Contributors



**Epvlib** 

https://pvlib-python.readthedocs.io/en/stable/contributing.html

## pvlib python Enhancements (v0.9.3 – v0.9.5)

## pvlib.irradiance

- Boland sky diffuse model

#### pvlib.iam

- schlick
- schlick\_diffuse

## pvlib.spectrum

 Spectral mismatch calculations (integration over spectral range)

## pvlib.snow

 Townsend model (corrected in v0.9.5)

## pvlib.temperature

- Coefficient translator (e.g., between Faiman and SAPM)
- faiman\_rad (adds radiative loss term)

## pvlib.pvarray

pvefficiency\_adr (and fit\_pvefficiency\_adr)

\***pvarray** will eventually contain DC power models (now in pvlib.pvsystem)

## pvlib.ivtools

astm\_e1036 (extracts Voc etc. from data per ASTM standard)

## pvlib.bifacial

- Can specify isotropic or Hay-Davies sky diffuse models
- Can vectorize infinite\_sheds for faster calculation (but uses more memory)

PVPerformance pvlib v0.9.3 2023 pvlib v0.9.4 pvlib v0.9.5 PVPerformance

pylib

10

2022

Full details: https://pvlib-python.readthedocs.io/en/stable/whatsnew.html

## Pvlib python: What's next?

#### Model parameter tools

- Module IV model parameter translator (e.g., CEC model ↔ Pvsyst model)

#### **Documentation revisions**

- Rewrite/reorg the docs to follow an intentional strategy instead of the current ad-hoc "pile of info"

#### Fill in some modeling gaps

- Transformer losses, shading losses, inverter operations off unity power factor

# What else? What would you like to contribute? Come to the pvlib user discussion tomorrow, 3pm



## What is pvanalytics?

- Workflow-independent library of base functions
- Fully compatible with pvlib-python
- Launched Feb 2020, v0.1.3 Dec 2022
- 6 contributors, 23 forks, 69 stars

#### Quality control

- Plausibility of irradiance and weather measurements
- Identification of missing, interpolated, or stale data
- Outlier detection
- Identification of timestamp problems such as daylight savings shifts

Feature identification

- Inverter clipping
- Clear-sky periods
- Day/night detection from power or irradiance

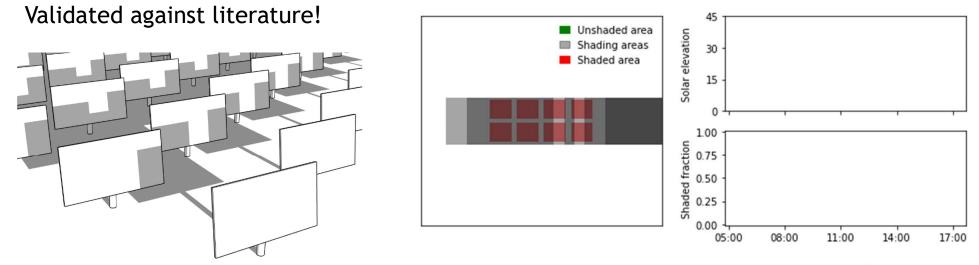
Identification of system properties

- Tilt and azimuth from power data
- Differentiation between fixed and tracking PV systems

Metrics

NREL weather corrected performance ratio

| lint and test<br>on: pull_request                                                                                                                                                                                                                        | 🗞 lint and test                                                                                                                                                                              |                                                                |                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>test (ubuntu-latest, 3.5)</li> </ul>                                                                                                                                                                                                            | This run Workflow file                                                                                                                                                                       |                                                                |                                                                                                                              |
| <ul> <li>test (ubuntu-latest, 3.6)</li> </ul>                                                                                                                                                                                                            |                                                                                                                                                                                              |                                                                |                                                                                                                              |
| <ul> <li>test (ubuntu-latest, 3.7)</li> </ul>                                                                                                                                                                                                            | API Reference                                                                                                                                                                                |                                                                |                                                                                                                              |
| <ul> <li>test (ubuntu-latest, 3.8)</li> </ul>                                                                                                                                                                                                            |                                                                                                                                                                                              |                                                                |                                                                                                                              |
| <ul> <li>test (macos-latest, 3.5)</li> </ul>                                                                                                                                                                                                             | Quality                                                                                                                                                                                      |                                                                |                                                                                                                              |
| <ul> <li>test (macos-latest, 3.6)</li> </ul>                                                                                                                                                                                                             | Irradiance                                                                                                                                                                                   |                                                                |                                                                                                                              |
| <ul> <li>test (macos-latest, 3.7)</li> </ul>                                                                                                                                                                                                             |                                                                                                                                                                                              |                                                                |                                                                                                                              |
|                                                                                                                                                                                                                                                          | The check * limits acrad functions use the OCRad                                                                                                                                             | algorithr                                                      | n 🛯 to identify irradiance                                                                                                   |
| <ul> <li>test (macos-latest, 3.8)</li> </ul>                                                                                                                                                                                                             | The check_*_limits_qcrad functions use the QCRad measurements that are beyond physical limits.                                                                                               | algorithr                                                      | n 🖪 to identify irradiance                                                                                                   |
| <ul> <li>test (windows-latest, 3.5)</li> </ul>                                                                                                                                                                                                           |                                                                                                                                                                                              | Test fo                                                        | n 🔝 to identify irradiance<br>or physical limits on GHI<br>he QCRad criteria.                                                |
| <ul> <li>test (windows-latest, 3.5)</li> <li>test (windows-latest, 3.6)</li> </ul>                                                                                                                                                                       | measurements that are beyond physical limits.                                                                                                                                                | Test fo<br>using t<br>Test fo                                  | r physical limits on GHI                                                                                                     |
| <ul> <li>test (windows-latest, 3.5)</li> <li>test (windows-latest, 3.6)</li> <li>test (windows-latest, 3.7)</li> <li>test (windows-latest, 3.8)</li> </ul>                                                                                               | measurements that are beyond physical limits.           quality.irradiance.check_ghi_limits_qcrad()                                                                                          | Test fo<br>using t<br>Test fo<br>using t<br>Test fo            | r physical limits on GHI<br>he QCRad criteria.<br>r physical limits on DHI                                                   |
| <ul> <li>test (windows-latest, 3.5)</li> <li>test (windows-latest, 3.6)</li> <li>test (windows-latest, 3.7)</li> <li>test (windows-latest, 3.8)</li> <li>lint (3.5)</li> </ul>                                                                           | <pre>measurements that are beyond physical limits. quality.irradiance.check_ghi_limits_qcrad() quality.irradiance.check_dhi_limits_qcrad()</pre>                                             | Test fo<br>using t<br>Test fo<br>using t<br>Test fo<br>using t | r physical limits on GHI<br>he QCRad criteria.<br>r physical limits on DHI<br>he QCRad criteria.<br>r physical limits on DNI |
| <ul> <li>test (macos-latest. 3.8)</li> <li>test (windows-latest. 3.5)</li> <li>test (windows-latest. 3.6)</li> <li>test (windows-latest. 3.7)</li> <li>test (windows-latest. 3.8)</li> <li>lint (3.5)</li> <li>lint (3.6)</li> <li>lint (3.7)</li> </ul> | <pre>measurements that are beyond physical limits. quality.irradiance.check_ghi_limits_qcrad() quality.irradiance.check_dhi_limits_qcrad() quality.irradiance.check_dni_limits_qcrad()</pre> | Test fo<br>using t<br>Test fo<br>using t<br>Test fo<br>using t | r physical limits on GHI<br>he QCRad criteria.<br>r physical limits on DHI<br>he QCRad criteria.<br>r physical limits on DNI |


| quality.irradiance.check_irradiance_consistency_qcrad() | Check<br>consistency of<br>GHI, DHI and<br>DNI using QCRad<br>criteria. |
|---------------------------------------------------------|-------------------------------------------------------------------------|
|---------------------------------------------------------|-------------------------------------------------------------------------|



## What is pvlib/twoaxistracking?

#### Shading of two-axis trackers

- Fully customizable field layouts
- Arbitrary rectangular panel shape
- Differentiation between active and frame area
- Extensive documentation, validated against literature



lib 13



# Thank You



www.github.com/pvlib/pvlib-python https://pvlib-python.readthedocs.io

www.github.com/pvlib/pvanalytics https://pvanalytics.readthedocs.io

SAND 2023-04324C

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.