

Analysis and Reduction of Uncertainties in Yield Assessments of Large-Scale Bifacial PV Projects

Anne Sophie Freunek*, Kai Saegebarth, Martin Dennenmoser

08.11.2023, Mendrisio, Switzerland

*Corresponding author, Email: Annesophie.Freunek@baywa-re.com

Agenda

Introduction

Results

Summary

Motivation

What is the actual bifacial gain on System level in simulation and operation for large-scale projects?

[1] PVsyst Software. <u>https://www.pvsyst.com/</u>

r.e.think energy [2] Ayala Pelaez and Deline, (2020). bifacial_radiance: a python package for modeling bifacial solar photovoltaic systems. Journal of Open Source Software, 5(50), 1865, <u>https://doi.org/10.21105/joss.01865</u> [3] Ward Larson, G. & Shakespeare, R., 1998. Rendering with Radiance: The Art and Science of Lighting Visualization. San Francisco: Morgan Kaufmann Publishers, Inc.

Bifacial Gain [4,5]

Optical Bifacial gain BG_{opt}:

 $BG_{opt} = G_{rear}/G_{front}$ []

With G_{rear} : Irradiation rear side [kWh/m²]

Module Bifacial gain BG_{mod} :

$$BG_{mod} = \varphi * BG_{opt}$$
[]

With Module Bifaciality φ

System Bifacial gain *BG*_{sys} :

 $BG_{sys} = E_{rear}/E_{front} = (E_{bifa} - E_{mono})/E_{mono} []$

With E: Energy output bifacial modules and monofacial modules [kWh]

Consultants do not always express the bifacial gain based on the same definition and do not state clearly which definition they used -> makes comparison difficult

^[4] J. S. Stein, C. Reise, J. B. Castro, G. Friesen, G. Mauger, E. Urrejola, and M. Wang, "Bifacial Photovoltaic Modules and Systems: Experience and Results from International Research and Pilot Applications," Report IEA-PVPS T13-14, 2021.

Methodology of Analysing field-measured Data

Comparison Method

> Comparison of the normalized energy output of monofacial and bifacial modules [6]

$$BG_{sys} = \frac{(E_{bifa}/P_{max,bifa} - E_{mono}/P_{max,mono})}{E_{mono}/P_{max,mono}} []$$

With E: Energy output bifacial modules and monofacial modules [kWh]

Irradiance Method

With two pyranometers, the irradiance received by the rear side and the irradiance received by the front side in the orientation of the array are measured [4]

$$BG_{opt} = G_{rear}/G_{front} []$$

With G_{rear} : Irradiation rear side [kWh/m²]

[4] J. S. Stein, C. Reise, J. B. Castro, G. Friesen, G. Mauger, E. Urrejola, and M. Wang, "Bifacial Photovoltaic Modules and Systems: Experience and Results from International Research and Pilot Applications," Report IEA-PVPS T13-14, 2021.

r.e.think energy

[6] Internal BayWa r.e. Document, "Quantifying the Field-Measure Bifacial Gain"

Yield Assessment Analysis Parameters to determine bifacial gain

Incident irradiance on the ground			
Beam ground factor	From sun's position, model		
Diffuse ground factor	0.0 9	6 From 2D model	
Shed transparent fraction	5.0	6 not sensitive	
Ground albedo	0.200	Monthly values	
Reflected irradiance on backside			
View factor	50.4 9	6 From 2D model	
Structure shading factor	5.0	 (0 = no shadings) 	
PV Array behavior			
Mismatch loss factor	10.0 %	6	
Module bifaciality factor	70.0 %	6 from PV module	

Parameter	External Consultant 1	External Consultant 2	BayWa r.e.
Albedo	20%	20%	15% - 25%
Structure Shading Factor	20% - 25% (Fixed Tilt) 5% - 7.5% (Tracker)	5%	5% - 6%
Shed Transparent Fraction	?	2% - 8%	5%

[1] PVsyst Software. https://www.pvsyst.com/

Yield Assessment Analysis

Deviations in the Assessment of bifacial gain for Tracker and Fixed Tilt projects

 Tracker Module BG:
 4.5

 range of 2.2% - 6.0%
 3.5

 2.5
 2

 1.5
 1.5

 1.5
 1

EC = External Consultant

Fixed Tilt Module BG: range of 0.7% - 4.5%

Simulatons Shading Factor Analysis

Rendering picture

AutoCAD drawing with sensor placement

$$SF[\%] = \frac{\sum_{n=0}^{N} G_{rear,without \, substructure} - \sum_{n=0}^{N} G_{rear,with \, substructure}}{\sum_{n=0}^{N} G_{rear,without \, substructure}} * 100$$
[7]

Simulatons Shading Factor Analysis

Shading Factor increases slightly with increasing latitude

Powerplant Analysis Analysing Test Fields and Power Plants – Results

7.00% 6.00% 5.00% 4.00% 3.00% 2.00% 1.00% 0.00% Floating Fixed Tilt Fixed Tilt Fixed Tilt Fixed Tilt Tracker Tracker US 1 Netherlands 1 Germany 1 Germany 2 Spain 2 Spain 1 Spain 1

System Bifacial Gain

Average system bifacial gain Germany 2: 2.5%

Powerplant Analysis

Analysing Test Fields and Power Plants – Irradiance Method

Front side simulation very accurate	
Rear side simulation below measurements	
 Reasons: Albedo is not exact Measurement Uncertainty Placement of pyranometer not favorable 	:

Optical Bifacial Gain	Pyranometer Rear Side	PVsyst
Spain 1 (Fixed Tilt)	7.5%	5.6%
Spain 1 (Tracker)	10.6%	8.4%
US 1 (Tracker)	9%	7.2%

Proposed Correction Factors

Parameter	BayWa r.e.	External Consultant 1	External Consultant 2	Correction
Albedo	15% - 25%	20%	20%	Site Specific
Structure Shading Factor Fixed Tilt	5%	20% -25%	5%	15%
Structure Shading Factor Tracking	5%	5% - 7.5%	5% - 6%	4.5%
Shed Transparent Fraction	5%	?	2% - 8%	5% (Calculation Tool for new modules)

Summary

Summary System Bifacial Gain for Different Technologies

		Agri Fixed Tilt 3.5% - 5.0%	4.0% - 6.0%	
	Fixed tilt 1.0% - 4.0%			
ng E-W				

Tracking

Agri Tracking 6.0% - 7.3%

Floati ~0.3%

Outcomes

- > Communicate and discuss research results with **third parties** (crucial point for PR guarantee)
- Equip new plants with albedometers and pyranometers or reference cells on multiple positions of the module to verify simulated parameters and albedo values
- Adapt developed tools and methods to changes in standard system

Outlook

- > New large-scale bifacial plants go into operation within this and next year \rightarrow verify results of this research
- > Topcon modules are integrated within the next year \rightarrow higher bifaciality

Sophie Freunek

R&D Engineering annesophie.freunek@baywa-re.com

[1] PVsyst Software. https://www.pvsyst.com/

- [2] Ayala Pelaez and Deline, (2020). bifacial_radiance: a python package for modeling bifacial solar photovoltaic systems. Journal of Open Source Software, 5(50), 1865, <u>https://doi.org/10.21105/joss.01865</u>
- [3] Ward Larson, G. & Shakespeare, R., 1998. Rendering with Radiance: The Art and Science of Lighting Visualization. San Francisco: Morgan Kaufmann Publishers, Inc.
- [4] J. S. Stein, C. Reise, J. B. Castro, G. Friesen, G. Mauger, E. Urrejola, and M. Wang, "Bifacial Photovoltaic Modules and Systems: Experience and Results from International Research and Pilot Applications," Report IEA-PVPS T13-14, 2021.
- [5] D. Valencia and P. Berthelemy, PV Modules: Bifacial technology: Global Optimization of Integrated Photovoltaic System for Low Electricity Cost.
- [6] Internal BayWa r.e. Document, "Quantifying the Field-Measure Bifacial Gain"
- [7] C. Zhao, J. Xiao, Y. Yu, and J.-N. Jaubert, "Accurate shading factor and mismatch loss analysis of bifacial HSAT systems through raytracing modeling," *Solar Energy Advances*, vol. 1, p. 100004, 2021.