Advances in Solar Measurement and Modeling at NREL

Dr. Manajit Sengupta
Dr. Yu Xie
Aron Habte
Dr Christian Gueymard

11th PVPMC Workshop, Wehai, China
December 4—5, 2018
The National Solar Radiation Database

248 weather stations with 26 Solar measurement stations [ERDA, NOAA, 1979]

239 modeled stations with 56 partial measurement stations [DOE, NOAA, 1994]

1,454 modeled locations [DOE, SUNY-A, NOAA, 2007]

1,454 modeled locations [DOE, CPR, 2012]

Satellite-based, gridded, 4 km x 4 km, half-hourly [DOE, NOAA, UW, SCS 2016]

http://nsrdb.nrel.gov
Physical Solar Model (PSM) Framework

- GOES
- MERRA2
- MODIS
- IMS

- Cloud Properties
- Atmospheric Profile
- Aerosol Properties
- Surface Albedo
- Snow Albedo

- FARMS

- GHI
- DNI
- DHI
Spectral Datasets from the NSRDB
Spectral Data in the Plane-of-Array

NSRDB Variables:
- Global horizontal irradiance (GHI)
- Direct normal irradiance (DNI)
- Diffuse horizontal irradiance (DHI)
- Clear-sky GHI, DNI, and DHI
- Cloud type
- Dew point
- Air temperature
- Atmospheric pressure
- Relative humidity
- Solar zenith angle
- Precipitable water
- Wind direction
- Wind speed
- Spectral POA (2002 wavelengths)

* From MERRA-2
** Recalculated from MERRA-2
Fast All-Sky Model for Solar Applications – Narrowband Irradiance on Tilted Surfaces (FARMS-NIT)

SMARTS – Simplified Model of Atmospheric Radiative Transfer of Sunshine.

Provides atmospheric properties including atmospheric optical depth, aerosol optical depth, asymmetry parameter and single-scattering albedo.
FARMS-NIT for Clear Sky

Two-layer model

- Spectral radiances are computed by solving the **radiative transfer equation** with the single-scattering approximation for three individual photon paths.
- The atmospheric radiances are given by radiances related to the three photon paths.
- POA irradiances are efficiently computed for 2002 wavelength bands (0.28-4.0 \(\mu \)m) from the radiances.
- Radiances are computed for 450 sky-view angles that can be integrated for any tilt-geometry.

To validate FARMS-NIT, we use measurements of GHI and cloud fraction at NREL’s SRRL to identify clear-sky conditions (shadows).

Measurements of precipitable water vapor (PWV), aerosol optical depth (AOD), and surface albedo are used by the models.

Measurements from EKO-WISER spectroradiometer (MS-711 and MS-712) on a 1-axis tracker is compared with FARMS-NIT and TMYSpec (parameterized model, Myers, 2012).
• FARMS-NIT has a much better performance than TMYSPEC, especially on the snow day when validated with spectral measurements from the EKO MS-711 Spectroradiometer.

• FARMS-NIT slightly overestimates spectral radiation in the UV and visible regions while TMYSPEC underestimates it.

• FARMS-NIT Mean Bias Error (MBE) < 1% and Absolute Mean Bias Error < 4%.
SMARTS provides atmospheric optical depth for layers below and above cloud.

Aerosols are not important in cloudy sky situation.
FARMS-NIT for cloudy-sky conditions

- Spectral radiances are computed by solving the radiative transfer equation.
- Two additional photon paths are considered for Rayleigh scattering under the clouds.
Cloud BTDF for water (left) and ice (right) clouds for $\tau = 5$, $De = 10 \, \mu m$, $\theta_0 = 30^\circ$ at $0.6 \, \mu m$. The viewing zenith angle increases from 0 to 90 degree along the radial direction.
• For computing hourly spectral POA irradiances for a day, the 64-stream DISORT, 16-stream DISORT, FARMS-NIT, and TMYSPEC consume 180 hours 48 minutes, 3 hours 18 minutes, 21.9 seconds, and 2.31 seconds.

• Our current server uses multiple-processors and we can compute and deliver spectral data for 1 year in \sim2 minutes.
Estimating Ultraviolet Radiation from Total Radiation
Why UV and How do we Estimate it

Why do we need UV estimates:

• Terrestrial ultraviolet (UV) radiation is a primary factor contributing to degradation and reliability of materials over time.
• There is limited availability of UV measurements.

How do we estimate UV

• Measured and/or modeled total solar irradiance (TS) (280–4000 nm) is relatively abundant.
• Estimate the clear-sky terrestrial UV irradiance (≈280–400 nm and ≈285-385 nm) from TS. Develop a model of the UV/TS ratio using simulations obtained with the Simple Model of the Atmospheric Radiative Transfer of Sunshine (SMARTS).
Goal: Worldwide Application

- The goal is to make the draft ASTM standard representative of all locations around the world.
R_{uv} as a Function of Airmass

$R_{uv} = \frac{GUV}{GHI}$

For mean annual fixed atmospheric conditions (prevailing conditions) at 15 world locations (280–400 nm)

SMARTS v2.9.7 is used
Fourth-Order Polynomial Functions

\[UV_m = TS_m (\sum_{i=0}^{4} m_i AM^i) \]

where \(AM^i \) is the airmass, and \(m_i \) are numerical coefficients obtained by least-squares fitting.

<table>
<thead>
<tr>
<th>Station</th>
<th>Lat</th>
<th>Long</th>
<th>Elevation (m)</th>
<th>Numerical Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birdsville, Australia</td>
<td>-25.9</td>
<td>139.3</td>
<td>46</td>
<td>1.79E-06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-8.39E-05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.47E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.01E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.09E-02</td>
</tr>
<tr>
<td>CEI Qiong Hai, HaiNan province, China</td>
<td>19.2</td>
<td>110.5</td>
<td>62</td>
<td>2.84E-06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.27E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.95E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.11E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.05E-02</td>
</tr>
<tr>
<td>CEI Turpan, XinJiang province, China</td>
<td>42.9</td>
<td>89.8</td>
<td>10</td>
<td>3.25E-06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.45E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.22E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.22E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.86E-02</td>
</tr>
<tr>
<td>Case Western Reserve University (CWRU), Ohio, USA</td>
<td>41.5</td>
<td>-81.6</td>
<td>200</td>
<td>2.53E-06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.15E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.87E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.18E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.05E-02</td>
</tr>
<tr>
<td>Fairbanks, AK, USA</td>
<td>64.8</td>
<td>-147.7</td>
<td>136</td>
<td>1.04E-06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-6.01E-05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.26E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-9.98E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.76E-02</td>
</tr>
<tr>
<td>KACST Riyadh, Saudi Arabia</td>
<td>24.9</td>
<td>46.4</td>
<td>740</td>
<td>3.30E-06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.46E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.17E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.16E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.02E-02</td>
</tr>
<tr>
<td>Miami, Florida, USA</td>
<td>25.6</td>
<td>-80.5</td>
<td>30</td>
<td>2.30E-06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.09E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.82E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.15E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.26E-02</td>
</tr>
<tr>
<td>Nauru</td>
<td>-0.5</td>
<td>166.9</td>
<td>7</td>
<td>1.46E-06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-7.52E-05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.38E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-9.76E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.38E-02</td>
</tr>
<tr>
<td>NREL-Golden, Colorado, USA</td>
<td>39.7</td>
<td>-105.2</td>
<td>1790</td>
<td>1.97E-05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-5.39E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.26E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-2.18E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.96E-02</td>
</tr>
<tr>
<td>Petrolina, Brazil</td>
<td>-9.4</td>
<td>-40.5</td>
<td>370</td>
<td>1.73E-06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-8.53E-05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.52E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.04E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.26E-02</td>
</tr>
<tr>
<td>Phoenix, Arizona, USA</td>
<td>33.9</td>
<td>-112.2</td>
<td>395</td>
<td>1.97E-06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-9.41E-05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.62E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.08E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.09E-02</td>
</tr>
<tr>
<td>Pretoria, South Africa</td>
<td>-25.8</td>
<td>28.3</td>
<td>1449</td>
<td>2.91E-06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.28E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.04E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.27E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.07E-02</td>
</tr>
<tr>
<td>Sanary, France</td>
<td>43.1</td>
<td>5.8</td>
<td>110</td>
<td>2.50E-06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.14E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.86E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.18E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.97E-02</td>
</tr>
<tr>
<td>Singapore</td>
<td>1.3</td>
<td>103.8</td>
<td>30</td>
<td>3.10E-06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.37E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.09E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.19E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.12E-02</td>
</tr>
<tr>
<td>Toravere, Estonia</td>
<td>58.3</td>
<td>26.5</td>
<td>70</td>
<td>2.16E-06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-9.92E-05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.67E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.10E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.84E-02</td>
</tr>
</tbody>
</table>
Variability in UV Estimates at Various Locations

UV Estimates for Various Air-masses for all locations

Series 1
Series 2
Series 3
Series 4
Series 5
Series 6

Site Number

R_UV
Validation using 1-minute Measurements

UV radiometers (Eppley Lab TUVR and Kipp & Zonen CUV4)

Modeled vs. measured 1-min UV global irradiance under all sky conditions at SRRL for low and high surface albedo conditions.

Modeled vs. measured 1-min UV global irradiance under clear-sky winter conditions at SRRL.

The correlation between the modeled and measured UV irradiance is highly significant ($R^2 = 0.995$), which provides confidence in the model developed here.
Hourly modeled vs. measured UV global irradiance under clear- and cloudy-sky conditions at SRRL for one year (August 2016 to August 2017).

Most of the hourly differences are within ±2 W/m². There are only a few outliers outside of the range of ±4 W/m², which could be related to unusual combinations of atmospheric conditions or radiometer maintenance issues.
ASTM Work Item: WK57714: Standard estimation of UV irradiance

https://www.astm.org/DATABASE.CART/WORKITEMS/WK57714.htm

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8529229
Low-Cost Multiparameter Sensor for Solar Resource Applications
Arable Mark Device

- Six-band spectrometer
- Air Temperature
- Humidity
- Pressure
- 4-Way Net Radiometer
- Shortwave (400~700 nm)

Auxiliary Sensing
- Soil moisture, camera

Cellular, Wi-Fi and Bluetooth Internal Antennas

Solar Power
- Rainfall & Hail
 - Drop size distribution

GPS, Tilt, Orientation

Cellular, Wi-Fi and Bluetooth

Longwave radiometer
- Crop and sky Temperature

Six-band spectrometer

Shortwave (400~700 nm)

Cellular, Wi-Fi and Bluetooth
- Rainfall & Hail
- Drop size distribution
- GPS, Tilt, Orientation
- Cellular, Wi-Fi and Bluetooth
- Longwave radiometer
- Crop and sky Temperature
- Six-band spectrometer
- Shortwave (400~700 nm)
Characterization Results

All-sky comparison at 1-minute resolution—shows good agreement compared with reference data.
Conclusions and Future Work

• A fast spectral POA model was built, validated and implemented to provide on demand spectral radiation from the NSRDB.
• A model was developed to estimate the GUV irradiance in two different wavebands (280–400 nm and 285–385 nm) using the total broadband solar irradiance.
• The atmospheric airmass was found to be the primary driver of the GUV/TS ratio, at least under “typical” atmospheric conditions.
• The model does not appear to be significantly affected by cloudiness.
• The model typically under- or overestimates the measured UV irradiance by only ±2 W/m² on an hourly basis during the course of one year.
• We characterized a low cost device for irradiance measurement and showed that it held significant promise for PV applications.
Thank You

www.nrel.gov

Contact: Manajit.Sengupta@nrel.gov
Validation at Various Locations

Kailua Kona, HI

San Diego, CA

Barrow, AK

Palmer, Antarctica

$y = 0.965x + 1.240$

$y = 1.079x - 0.777$

$y = 0.942x - 1.004$

$y = 0.923x - 1.351$

R Squared: 0.97
MBE: 0.4
MAE: 2.6
RMSE: 3.7

R Squared: 0.99
MBE: 1.2
MAE: 2.2
RMSE: 3.0

R Squared: 0.95
MBE: -1.7
MAE: 2.1
RMSE: 2.8

R Squared: 0.96
MBE: 2.1
MAE: 2.3
RMSE: 2.9
Validation

Miami, FL (5 deg. tilt)

- Model: $y = 1.037x - 2.668$
- $R^2 = 0.96$
- MBE: 2.0
- MAE: 3.1
- RMSE: 3.9

Miami, FL (26 deg. tilt)

- Model: $y = 1.077x - 4.324$
- $R^2 = 0.95$
- MBE: 2.6
- MAE: 3.9
- RMSE: 4.8

Phoenix, AZ (5 deg. tilt)

- Model: $y = 0.945x - 1.918$
- $R^2 = 0.98$
- MBE: 3.5
- MAE: 3.1
- RMSE: 4.1

Phoenix, AZ (34 deg. tilt)

- Model: $y = 1.098x - 5.169$
- $R^2 = 6.98$
- MBE: 2.5
- MAE: 3.0
- RMSE: 3.5
Comparison of results using different definitions of UV spectral range

<table>
<thead>
<tr>
<th>Station</th>
<th>NREL Model (280–400 nm) MJ/m²</th>
<th>NREL Model (295–400 nm) MJ/m²</th>
<th>Poliskie, 2011 (295–400 nm) MJ/m²</th>
<th>NREL Model (285–385 nm) MJ/m²</th>
<th>NREL Model (295–385 nm) MJ/m²</th>
<th>White et al., 2011 (295–385 nm) MJ/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case Western Reserve Univ. (CWRU), Ohio, USA</td>
<td>291 (0° tilt) 285 (5° tilt) 269 (41° tilt)</td>
<td>288 (0° tilt) 285 (5° tilt) 269 (41° tilt)</td>
<td>—</td>
<td>227 (0° tilt) 221 (5° tilt) 208 (41° tilt)</td>
<td>224 (0° tilt) 221 (5° tilt) 208 (41° tilt)</td>
<td>—</td>
</tr>
<tr>
<td>Miami, Florida, USA</td>
<td>422 (0° tilt) 410 (5° tilt) 400 (26° tilt) 369 (45° tilt)</td>
<td>416 (0° tilt) 410 (5° tilt) 400 (26° tilt) 369 (45° tilt)</td>
<td>390 (26° tilt)</td>
<td>330 (0° tilt) 320 (5° tilt) 295 (45° tilt)</td>
<td>325 (0° tilt) 320 (5° tilt) 288 (45° tilt)</td>
<td>338 (5° tilt) 320 (45° tilt)</td>
</tr>
<tr>
<td>NREL, Golden, Colorado, USA</td>
<td>341 (0° tilt) 341 (5° tilt) 337 (40° tilt)</td>
<td>339 (0° tilt) 341 (5° tilt) 337 (40° tilt)</td>
<td>—</td>
<td>266 (0° tilt) 265 (5° tilt) 260 (40° tilt)</td>
<td>264 (0° tilt) 265 (5° tilt) 260 (40° tilt)</td>
<td>—</td>
</tr>
<tr>
<td>Phoenix, Arizona, USA</td>
<td>439 (0° tilt) 435 (5° tilt) 432 (34° tilt)</td>
<td>436 (0° tilt) 435 (5° tilt) 432 (34° tilt)</td>
<td>440 (34° tilt)</td>
<td>343 (0° tilt) 339 (5° tilt) 361 (34° tilt)</td>
<td>340 (0° tilt) 339 (5° tilt) 336 (34° tilt)</td>
<td>359 (5° tilt) 363 (34° tilt)</td>
</tr>
</tbody>
</table>

* Values are obtained using the NREL TMY data set (PSM V3).
Note: Orientation is south facing