In-Situ Module IV Measurement

for PV System Performance Monitoring & Control

Bill Stueve

Monitoring PV performance

What can we see by monitoring electrical performance at the inverter?

- Performance ratios
- Actual power produced
- Inverter operating current and voltage

What do we **not** see by monitoring at the inverter?

- Power losses hidden by clipping
- Potential power if not curtailed
- Soiling
- Module degradation
- Voltage loss
- Strings offline

Unlock information by measuring **within** the inverter block More granular measurements

Inverter

String

Modules

What is in-situ module IV?

IV unit installed on module within string

Example data

Module's available power, voltage, & current...vs. actual output to string

Module available power exceeds inverter clipping limit

A

Power dips while cloud passes overhead

В

Degradation

osses

Detect module power loss that could be hidden by clipping

Earlier detection. No field or lab flash testing.

Observe module degradation modes by IV curve data

Soiling losses

How much power is this module losing because of soiling?

Soiled (1.3% of Active Area)

Non-uniform soiling causes disproportionate power loss

Voltage (V)

Bifacial irradiance

Source: Gostein, Ayala Pelaez, Deline, Habte, Hansen, Marion, Newmiller, Sengupta, Stein, Suez, "Measuring Irradiance for Bifacial PV Systems," PVSC 2021

Reference modules could simplify measuring total effective irradiance

Calibrated module lsc yields total front plus rear irradiance... Automatically accounts for albedo, spectrum, bifaciality, non-uniformity

Real-time plant prediction

Future PV plants must support real-time 10-second forecasts of potential output while curtailed – to follow grid demand

new smart solar farm Renewable energy retailer Flow Power claims that the integrated technology behind a

Flow Power claims Australian first at

Renewable energy retailer Flow Power claims that the integrated technology behind a new "smart" solar farm in the town of Berri, South Australia, is the first of its kind to be switched on in Australia.

APRIL 6, 2023 DAVID CARROLL

TECHNOLOGY AND R&D UTILITY SCALE PV AUSTRALIA

PV plant providing grid ancillary services in Chile

Chile's National Electric Coordinator has granted approval for a new First Solar PV project to supply auxiliary grid services on a commercial basis. The installation has performed better than gas turbine technologies.

AUGUST 21, 2020 PILAR SÁNCHEZ MOLINA

GRIDS & INTEGRATION UTILITY SCALE PV CHILE

The Luz del Norte solar plant in Chile Image: SMA / First Solar

Demonstration of Essential Reliability Services by a 300-MW Solar Photovoltaic Power Plant

Clyde Loutan, Peter Klauer, Sirajul Chowdhury, and Stephen Hall *California Independent System Operator*

Mahesh Morjaria, Vladimir Chadliev, Nick Milam, and Christopher Milan *First Solar*

Vahan Gevorgian National Renewable Energy Laboratory

Two groups challenge grid operator rules that restrict renewable energy

Earthjustice filed a complaint with FERC on behalf of SEIA that challenges a MISO rule that prohibits renewable energy resources from providing ancillary services.

FEBRUARY 1, 2023 ANNE FISCHER

MARKETS & POLICY POLICY UNITED STATE

MARKETS

IV reference modules throughout plant can predict potential power output

